
Write in ascending order of the surds given in each of the following sets $\sqrt[4]{{625}},\sqrt[3]{{343}},\sqrt {100} $
Answer
620.7k+ views
Hint: In this question we are provided with a term that is order of the surds mathematically it means that, in $\sqrt[n]{a}$, n is called the order of surd and a is called the radicand. After learning this we will pretty much be clear about our next step which involves dealing with roots and exponents then we have to arrange the data in ascending order which is when we move from smaller to the bigger number.
Complete step-by-step answer:
For solving the given question, we first must be aware of the order of a surd. The order of a surd indicates the index of a root to be extracted. In $\sqrt[n]{a}$, n is called the order of surd and a is called the radicand.
Now, coming back to the question we know we are given the following sets:
$
\sqrt[4]{{625}} = \sqrt[4]{{{{(5)}^4}}} = \sqrt[4]{{5 \times 5 \times 5 \times 5}} = 5 \\
\sqrt[3]{{343}} = \sqrt[3]{{{{(7)}^3}}} = \sqrt[3]{{7 \times 7 \times 7}} = 7 \\
\sqrt {100} = \sqrt {{{10}^2}} = \sqrt {10 \times 10} = 10 \\
$
Hence, the ascending order is 5<7<10.
Note: In this question one must note that we should know at first what order of a surd indicates the index of a root to be extracted. In $\sqrt[n]{a}$ , n is called the order of surd and a is called the radicand. Then once the basic is clear it is a very simple question which involves exponents and powers and nothing other than that also one must know what is ascending order in this type of arrangement we arrange going from the smaller value to the bigger keeping these small points in mind one should be able to solve the question.
Complete step-by-step answer:
For solving the given question, we first must be aware of the order of a surd. The order of a surd indicates the index of a root to be extracted. In $\sqrt[n]{a}$, n is called the order of surd and a is called the radicand.
Now, coming back to the question we know we are given the following sets:
$
\sqrt[4]{{625}} = \sqrt[4]{{{{(5)}^4}}} = \sqrt[4]{{5 \times 5 \times 5 \times 5}} = 5 \\
\sqrt[3]{{343}} = \sqrt[3]{{{{(7)}^3}}} = \sqrt[3]{{7 \times 7 \times 7}} = 7 \\
\sqrt {100} = \sqrt {{{10}^2}} = \sqrt {10 \times 10} = 10 \\
$
Hence, the ascending order is 5<7<10.
Note: In this question one must note that we should know at first what order of a surd indicates the index of a root to be extracted. In $\sqrt[n]{a}$ , n is called the order of surd and a is called the radicand. Then once the basic is clear it is a very simple question which involves exponents and powers and nothing other than that also one must know what is ascending order in this type of arrangement we arrange going from the smaller value to the bigger keeping these small points in mind one should be able to solve the question.
Recently Updated Pages
Master Class 4 English: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Class 4 Question and Answer - Your Ultimate Solutions Guide

Master Class 4 Science: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Who is eligible for RTE class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

