Answer
Verified
476.4k+ views
Hint: In this question we are provided with a term that is order of the surds mathematically it means that, in $\sqrt[n]{a}$, n is called the order of surd and a is called the radicand. After learning this we will pretty much be clear about our next step which involves dealing with roots and exponents then we have to arrange the data in ascending order which is when we move from smaller to the bigger number.
Complete step-by-step answer:
For solving the given question, we first must be aware of the order of a surd. The order of a surd indicates the index of a root to be extracted. In $\sqrt[n]{a}$, n is called the order of surd and a is called the radicand.
Now, coming back to the question we know we are given the following sets:
$
\sqrt[4]{{625}} = \sqrt[4]{{{{(5)}^4}}} = \sqrt[4]{{5 \times 5 \times 5 \times 5}} = 5 \\
\sqrt[3]{{343}} = \sqrt[3]{{{{(7)}^3}}} = \sqrt[3]{{7 \times 7 \times 7}} = 7 \\
\sqrt {100} = \sqrt {{{10}^2}} = \sqrt {10 \times 10} = 10 \\
$
Hence, the ascending order is 5<7<10.
Note: In this question one must note that we should know at first what order of a surd indicates the index of a root to be extracted. In $\sqrt[n]{a}$ , n is called the order of surd and a is called the radicand. Then once the basic is clear it is a very simple question which involves exponents and powers and nothing other than that also one must know what is ascending order in this type of arrangement we arrange going from the smaller value to the bigger keeping these small points in mind one should be able to solve the question.
Complete step-by-step answer:
For solving the given question, we first must be aware of the order of a surd. The order of a surd indicates the index of a root to be extracted. In $\sqrt[n]{a}$, n is called the order of surd and a is called the radicand.
Now, coming back to the question we know we are given the following sets:
$
\sqrt[4]{{625}} = \sqrt[4]{{{{(5)}^4}}} = \sqrt[4]{{5 \times 5 \times 5 \times 5}} = 5 \\
\sqrt[3]{{343}} = \sqrt[3]{{{{(7)}^3}}} = \sqrt[3]{{7 \times 7 \times 7}} = 7 \\
\sqrt {100} = \sqrt {{{10}^2}} = \sqrt {10 \times 10} = 10 \\
$
Hence, the ascending order is 5<7<10.
Note: In this question one must note that we should know at first what order of a surd indicates the index of a root to be extracted. In $\sqrt[n]{a}$ , n is called the order of surd and a is called the radicand. Then once the basic is clear it is a very simple question which involves exponents and powers and nothing other than that also one must know what is ascending order in this type of arrangement we arrange going from the smaller value to the bigger keeping these small points in mind one should be able to solve the question.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths