
Write down and simplify:
The 5th term of ${\left( {3a - 2b} \right)^{ - 1}}$
Answer
602.7k+ views
Hint: Here we have to find the 5th term in the expansion of ${\left( {3a - 2b} \right)^{ - 1}}$, so use the formula for any general ${(r + 1)^{th}}$ term in the series expansion of ${(1 + x)^n}$.Note point is to simplify the given expression ${\left( {3a - 2b} \right)^{ - 1}}$into ${(1 + x)^n}$ before finding the general ${(r + 1)^{th}}$. This concept will help you reach the right answer to this problem statement.
We have been given the expression ${\left( {3a - 2b} \right)^{ - 1}}$ so let’s first simplify it to ${(1 + x)^n}$ form.
Taking common 3a from the expression ${\left( {3a - 2b} \right)^{ - 1}}$ we get,
$ \Rightarrow {\left( {3a} \right)^{ - 1}}{\left( {1 - \dfrac{{2b}}{{3a}}} \right)^{ - 1}} = \dfrac{1}{{3a}}{\left( {1 - \dfrac{{2b}}{{3a}}} \right)^{ - 1}}$……………………….. (1)
Any general ${(r + 1)^{th}}$ term in the expansion of ${(1 + x)^n}$ is given as ${T_{r + 1}} = \dfrac{{n(n - 1)(n - 2).............(n - r + 1)}}{{r!}}{x^r}$………………… (2)
We have to find 5th that is ${T_5}$ term so clearly r=4 (using equation 2)…………………… (3)
Now using equation (1) and on comparing with ${(1 + x)^n}$ we can say that $x = \dfrac{{ - 2b}}{{3a}}$ and $n = - 1$……………… (4)
Substituting the values from equation (4) and equation (3) in equation (2) and using equation (1) we get,
${T_5} = \dfrac{1}{{3a}}\left[ {\dfrac{{( - 1)( - 1 - 1)( - 1 - 2)( - 1 - 4 + 1)}}{{4!}}{{\left( {\dfrac{{ - 2b}}{{3a}}} \right)}^4}} \right]$
$ \Rightarrow {T_5} = \dfrac{1}{{3a}}\left[ {\dfrac{{( - 1)( - 2)( - 3)( - 4)}}{{4!}}{{\left( { - 1} \right)}^4}\left( {\dfrac{{16{b^4}}}{{81{a^4}}}} \right)} \right]$
On solving we get
$ \Rightarrow {T_5} = \dfrac{1}{{3a}}\left[ {\dfrac{{24}}{{4 \times 3 \times 2 \times 1}}\left( {\dfrac{{16{b^4}}}{{81{a^4}}}} \right)} \right]$
Thus the value of 5th term in the expansion of ${\left( {3a - 2b} \right)^{ - 1}}$is ${T_5} = \dfrac{{16{b^4}}}{{243{a^5}}}$.
Note: Whenever we face such type of problems the key concept to convert the given series expansion into the form ${(1 + x)^n}$ so that the general formula of any ${(r + 1)^{th}}$ term could be applicable to that given expression. This concept will help you get on the right track to get to the answer.
We have been given the expression ${\left( {3a - 2b} \right)^{ - 1}}$ so let’s first simplify it to ${(1 + x)^n}$ form.
Taking common 3a from the expression ${\left( {3a - 2b} \right)^{ - 1}}$ we get,
$ \Rightarrow {\left( {3a} \right)^{ - 1}}{\left( {1 - \dfrac{{2b}}{{3a}}} \right)^{ - 1}} = \dfrac{1}{{3a}}{\left( {1 - \dfrac{{2b}}{{3a}}} \right)^{ - 1}}$……………………….. (1)
Any general ${(r + 1)^{th}}$ term in the expansion of ${(1 + x)^n}$ is given as ${T_{r + 1}} = \dfrac{{n(n - 1)(n - 2).............(n - r + 1)}}{{r!}}{x^r}$………………… (2)
We have to find 5th that is ${T_5}$ term so clearly r=4 (using equation 2)…………………… (3)
Now using equation (1) and on comparing with ${(1 + x)^n}$ we can say that $x = \dfrac{{ - 2b}}{{3a}}$ and $n = - 1$……………… (4)
Substituting the values from equation (4) and equation (3) in equation (2) and using equation (1) we get,
${T_5} = \dfrac{1}{{3a}}\left[ {\dfrac{{( - 1)( - 1 - 1)( - 1 - 2)( - 1 - 4 + 1)}}{{4!}}{{\left( {\dfrac{{ - 2b}}{{3a}}} \right)}^4}} \right]$
$ \Rightarrow {T_5} = \dfrac{1}{{3a}}\left[ {\dfrac{{( - 1)( - 2)( - 3)( - 4)}}{{4!}}{{\left( { - 1} \right)}^4}\left( {\dfrac{{16{b^4}}}{{81{a^4}}}} \right)} \right]$
On solving we get
$ \Rightarrow {T_5} = \dfrac{1}{{3a}}\left[ {\dfrac{{24}}{{4 \times 3 \times 2 \times 1}}\left( {\dfrac{{16{b^4}}}{{81{a^4}}}} \right)} \right]$
Thus the value of 5th term in the expansion of ${\left( {3a - 2b} \right)^{ - 1}}$is ${T_5} = \dfrac{{16{b^4}}}{{243{a^5}}}$.
Note: Whenever we face such type of problems the key concept to convert the given series expansion into the form ${(1 + x)^n}$ so that the general formula of any ${(r + 1)^{th}}$ term could be applicable to that given expression. This concept will help you get on the right track to get to the answer.
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

In which state Jews are not considered minors?

What is Ornithophobia?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

