Question
Answers

Write any four solutions for the following equation: 3x + y = 7

Answer Verified Verified
Hint- Here, we will be finding out the points which satisfy the given equation because those are the solutions to the given equation.

Given equation is $3x + y = 7 \Rightarrow y = - 3x + 7{\text{ }} \to {\text{(1)}}$
Solutions for any equation are determined by finding out the points which will be satisfying the given equation.
Put $x = 0$, the value of y is evaluated from equation (1) as under
$ \Rightarrow y = \left( { - 3} \right) \times 0 + 7 \Rightarrow y = 7$
So, the first solution is $\left[ {0,7} \right]$
Put $x = 1$, the value of y is evaluated from equation (1) as under
$ \Rightarrow y = \left( { - 3} \right) \times 1 + 7 = - 3 + 7 \Rightarrow y = 4$
So, the second solution is $\left[ {1,4} \right]$
Put $x = 2$, the value of y is evaluated from equation (1) as under
$ \Rightarrow y = \left( { - 3} \right) \times 2 + 7 = - 6 + 7 \Rightarrow y = 1$
So, the third solution is $\left[ {2,1} \right]$
Put $x = 3$, the value of y is evaluated from equation (1) as under
$ \Rightarrow y = \left( { - 3} \right) \times 3 + 7 = - 9 + 7 \Rightarrow y = - 2$
So, the fourth solution is $\left[ {3, - 2} \right]$
Therefore, any four solutions to the given equation are $\left[ {0,7} \right]$, $\left[ {1,4} \right]$, $\left[ {2,1} \right]$ and $\left[ {3, - 2} \right]$.

Note- As we know that the general equation of any straight line having m slope and y intercept as c is given by y = mx + c. Clearly, the given equation is an equation of a straight line with a slope of - 3 and y intercept as 7. In this problem, there can be multiple answers possible since there will be many points satisfying the given equation of straight line.
Bookmark added to your notes.
View Notes
×