Answer
Verified
425.7k+ views
Hint: We will compare these two equations with the general form of slope intercept equation and then we will convert these equations accordingly. Finally we get the required answer.
Formula used: The general equation of slope intercept form of any equation is \[y = mx + c\], where \[m\] is the slope of the equation and \[c\] is an arbitrary constant.
Slope of any equation states the nature of the equation.
Slope of an equation is defined by the ratio of rise and run made by the straight line.
Suppose coordinates joining the line are \[({x_1},{y_1})\;and\;({x_2},{y_2})\].
So, the raise made by the line would be \[({y_2} - {y_1})\] and the run made by the line would become \[({x_2} - {x_1})\].
In such cases slope of the equation will be \[ = \dfrac{{({y_2} - {y_1})}}{{({x_2} - {x_1})}}\].
Complete Step by Step Solution:
The given equations are \[6y = 3x + 4\;and\;y - x = 0.\]
The first equation is: \[6y = 3x + 4\].
So, divide the both sides of the equation by \[6\], we get:
\[ \Rightarrow y = \dfrac{{3x + 4}}{6}\].
Now, by splitting up the variables on R.H.S, we get:
\[ \Rightarrow y = \dfrac{{3x}}{6} + \dfrac{4}{6}\].
Now, by completing the division, we get:
\[ \Rightarrow y = \dfrac{x}{2} + \dfrac{2}{3}\], where \[m = \dfrac{1}{2}\;and\;c = \dfrac{2}{3}.\]
The second equation is: \[y - x = 0.\]
Taking the term ‘\[x\]’ on the R.H.S, we get:
\[y = x\].
So, the above equation states that the line goes through the coordinate\[(0,0)\] and the slope of the equation is also \[1\].
\[\therefore \]The slope intercepts form of \[6y = 3x + 4\] is \[y = \dfrac{x}{2} + \dfrac{2}{3}\], where \[m = \dfrac{1}{2}\;and\;c = \dfrac{2}{3}\], and the slope intercept form of \[y - x = 0\] is \[y = x\], where \[m = 1\;and\;c = 0.\]
Note: The general equation of slope intercept form of any equation is \[y = mx + c\], where \[m\] is the slope of the equation and \[c\] is an arbitrary constant.
For, \[y = mx + c\]:
If we have a negative slope, the line is decreasing or falling from left to right, and passing through the point \[(0,c)\].
On the other hand, if we have a positive slope, the line is increasing or rising from left to right, and passing through the point \[(0,c)\].
For, \[y = mx - c\]
If we have a negative slope, the line is decreasing or falling from left to right, and passing through the point \[(0, - c)\].
On the other hand, if we have a positive slope, the line is increasing or rising from left to right, and passing through the point \[(0, - c)\].
Formula used: The general equation of slope intercept form of any equation is \[y = mx + c\], where \[m\] is the slope of the equation and \[c\] is an arbitrary constant.
Slope of any equation states the nature of the equation.
Slope of an equation is defined by the ratio of rise and run made by the straight line.
Suppose coordinates joining the line are \[({x_1},{y_1})\;and\;({x_2},{y_2})\].
So, the raise made by the line would be \[({y_2} - {y_1})\] and the run made by the line would become \[({x_2} - {x_1})\].
In such cases slope of the equation will be \[ = \dfrac{{({y_2} - {y_1})}}{{({x_2} - {x_1})}}\].
Complete Step by Step Solution:
The given equations are \[6y = 3x + 4\;and\;y - x = 0.\]
The first equation is: \[6y = 3x + 4\].
So, divide the both sides of the equation by \[6\], we get:
\[ \Rightarrow y = \dfrac{{3x + 4}}{6}\].
Now, by splitting up the variables on R.H.S, we get:
\[ \Rightarrow y = \dfrac{{3x}}{6} + \dfrac{4}{6}\].
Now, by completing the division, we get:
\[ \Rightarrow y = \dfrac{x}{2} + \dfrac{2}{3}\], where \[m = \dfrac{1}{2}\;and\;c = \dfrac{2}{3}.\]
The second equation is: \[y - x = 0.\]
Taking the term ‘\[x\]’ on the R.H.S, we get:
\[y = x\].
So, the above equation states that the line goes through the coordinate\[(0,0)\] and the slope of the equation is also \[1\].
\[\therefore \]The slope intercepts form of \[6y = 3x + 4\] is \[y = \dfrac{x}{2} + \dfrac{2}{3}\], where \[m = \dfrac{1}{2}\;and\;c = \dfrac{2}{3}\], and the slope intercept form of \[y - x = 0\] is \[y = x\], where \[m = 1\;and\;c = 0.\]
Note: The general equation of slope intercept form of any equation is \[y = mx + c\], where \[m\] is the slope of the equation and \[c\] is an arbitrary constant.
For, \[y = mx + c\]:
If we have a negative slope, the line is decreasing or falling from left to right, and passing through the point \[(0,c)\].
On the other hand, if we have a positive slope, the line is increasing or rising from left to right, and passing through the point \[(0,c)\].
For, \[y = mx - c\]
If we have a negative slope, the line is decreasing or falling from left to right, and passing through the point \[(0, - c)\].
On the other hand, if we have a positive slope, the line is increasing or rising from left to right, and passing through the point \[(0, - c)\].
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE