Without using trigonometric tables, evaluate that:
\[\dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }}\]
Last updated date: 16th Mar 2023
•
Total views: 305.1k
•
Views today: 7.85k
Answer
305.1k+ views
Hint: Use the formulas of the trigonometric functions. These trigonometric formulas are $\tan x=\cot \left( 90-x \right)$, $\cot x=\dfrac{1}{\tan x}$ and $\text{cose}{{\text{c}}^{2}}x-{{\cot }^{2}}x=1$. Here, the angle x is in degree. Using these formulas, we can solve this question.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In trigonometry, we have some formulas that relate tan and cot functions. These formulas are,
$\tan x=\cot \left( 90-x \right)............\left( 1 \right)$
$\cot x=\dfrac{1}{\tan x}...............\left( 2 \right)$
Also, in trigonometry we have an identity,
$\text{cose}{{\text{c}}^{2}}x-{{\cot }^{2}}x=1.................\left( 3 \right)$
In all the above 3 formulas, the angle x should be in degree.
In the question, we are required to evaluate \[\dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }}\]
In formula $\left( 1 \right)$, substituting x = 53, we can write \[\tan {{53}^{\circ }}=\cot \left( 90-53 \right)=\cot {{37}^{\circ }}\] and substituting x = 77, we can write \[\tan {{77}^{\circ }}=\cot \left( 90-77 \right)=\cot {{13}^{\circ }}\]. Substituting \[\tan {{53}^{\circ }}\] and \[\tan {{77}^{\circ }}\] in the above expression, we get,
\[\dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\cot {{37}^{\circ }}\cot {{13}^{\circ }}\]
In formula $\left( 2 \right)$, substituting x = 13, we get\[\cot {{13}^{\circ }}=\dfrac{1}{\tan {{13}^{\circ }}}\] and substituting x = 37, we get \[\cot {{37}^{\circ }}=\dfrac{1}{\tan {{37}^{\circ }}}\]. Substituting these in the above expression, we get,
\[\begin{align}
& \dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\dfrac{1}{\tan {{37}^{\circ }}}\dfrac{1}{\tan {{13}^{\circ }}} \\
& \Rightarrow \dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{45}^{\circ }} \\
& \Rightarrow \dfrac{2}{3}\left( \text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\cot {{58}^{\circ }}\tan {{32}^{\circ }} \right)-\dfrac{5}{3}\tan {{45}^{\circ }} \\
\end{align}\]
Using formula $\left( 1 \right)$, substituting $\tan {{32}^{\circ }}=\cot \left( 90-32 \right)=\cot {{32}^{\circ }}$ in the above expression, we get,
\[\dfrac{2}{3}\left( \text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }} \right)-\dfrac{5}{3}\tan {{45}^{\circ }}\]
From formula $\left( 3 \right)$, substituting x = 58, we get,
\[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\]
Substituting \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\] in the above expression, we get,
\[\begin{align}
& \dfrac{2}{3}\left( 1 \right)-\dfrac{5}{3}\tan {{45}^{\circ }} \\
& \Rightarrow \dfrac{2}{3}-\dfrac{5}{3}\tan {{45}^{\circ }} \\
\end{align}\]
Also, from trigonometry, we have \[\tan {{45}^{\circ }}=1\]. Substituting \[\tan {{45}^{\circ }}=1\] in the above equation, we get,
\[\begin{align}
& \dfrac{2}{3}-\dfrac{5}{3}\left( 1 \right) \\
& \Rightarrow \dfrac{2}{3}-\dfrac{5}{3} \\
& \Rightarrow \dfrac{-3}{3} \\
& \Rightarrow -1 \\
\end{align}\]
Hence, the answer of the trigonometric expression is -1.
Note: There is a possibility that one may commit a mistake while using the identity \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\]. It is a very common mistake that one may write this as \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}+{{\cot }^{2}}{{58}^{\circ }}=1\] instead of \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\]. To avoid this mistake, one should start from the identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ and divide both sides of the equation by ${{\sin }^{2}}x$. Then substitute $\dfrac{\cos x}{\sin x}=1$ and $\dfrac{1}{\sin x}=\text{cosecx}$. Substitute $\dfrac{\cos x}{\sin x}=1$ and $\dfrac{1}{\sin x}=\text{cosecx}$ in ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, we will get the identity $\text{cose}{{\text{c}}^{2}}x-{{\cot }^{2}}x=1$.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In trigonometry, we have some formulas that relate tan and cot functions. These formulas are,
$\tan x=\cot \left( 90-x \right)............\left( 1 \right)$
$\cot x=\dfrac{1}{\tan x}...............\left( 2 \right)$
Also, in trigonometry we have an identity,
$\text{cose}{{\text{c}}^{2}}x-{{\cot }^{2}}x=1.................\left( 3 \right)$
In all the above 3 formulas, the angle x should be in degree.
In the question, we are required to evaluate \[\dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }}\]
In formula $\left( 1 \right)$, substituting x = 53, we can write \[\tan {{53}^{\circ }}=\cot \left( 90-53 \right)=\cot {{37}^{\circ }}\] and substituting x = 77, we can write \[\tan {{77}^{\circ }}=\cot \left( 90-77 \right)=\cot {{13}^{\circ }}\]. Substituting \[\tan {{53}^{\circ }}\] and \[\tan {{77}^{\circ }}\] in the above expression, we get,
\[\dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\cot {{37}^{\circ }}\cot {{13}^{\circ }}\]
In formula $\left( 2 \right)$, substituting x = 13, we get\[\cot {{13}^{\circ }}=\dfrac{1}{\tan {{13}^{\circ }}}\] and substituting x = 37, we get \[\cot {{37}^{\circ }}=\dfrac{1}{\tan {{37}^{\circ }}}\]. Substituting these in the above expression, we get,
\[\begin{align}
& \dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\dfrac{1}{\tan {{37}^{\circ }}}\dfrac{1}{\tan {{13}^{\circ }}} \\
& \Rightarrow \dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{45}^{\circ }} \\
& \Rightarrow \dfrac{2}{3}\left( \text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\cot {{58}^{\circ }}\tan {{32}^{\circ }} \right)-\dfrac{5}{3}\tan {{45}^{\circ }} \\
\end{align}\]
Using formula $\left( 1 \right)$, substituting $\tan {{32}^{\circ }}=\cot \left( 90-32 \right)=\cot {{32}^{\circ }}$ in the above expression, we get,
\[\dfrac{2}{3}\left( \text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }} \right)-\dfrac{5}{3}\tan {{45}^{\circ }}\]
From formula $\left( 3 \right)$, substituting x = 58, we get,
\[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\]
Substituting \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\] in the above expression, we get,
\[\begin{align}
& \dfrac{2}{3}\left( 1 \right)-\dfrac{5}{3}\tan {{45}^{\circ }} \\
& \Rightarrow \dfrac{2}{3}-\dfrac{5}{3}\tan {{45}^{\circ }} \\
\end{align}\]
Also, from trigonometry, we have \[\tan {{45}^{\circ }}=1\]. Substituting \[\tan {{45}^{\circ }}=1\] in the above equation, we get,
\[\begin{align}
& \dfrac{2}{3}-\dfrac{5}{3}\left( 1 \right) \\
& \Rightarrow \dfrac{2}{3}-\dfrac{5}{3} \\
& \Rightarrow \dfrac{-3}{3} \\
& \Rightarrow -1 \\
\end{align}\]
Hence, the answer of the trigonometric expression is -1.
Note: There is a possibility that one may commit a mistake while using the identity \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\]. It is a very common mistake that one may write this as \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}+{{\cot }^{2}}{{58}^{\circ }}=1\] instead of \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\]. To avoid this mistake, one should start from the identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ and divide both sides of the equation by ${{\sin }^{2}}x$. Then substitute $\dfrac{\cos x}{\sin x}=1$ and $\dfrac{1}{\sin x}=\text{cosecx}$. Substitute $\dfrac{\cos x}{\sin x}=1$ and $\dfrac{1}{\sin x}=\text{cosecx}$ in ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, we will get the identity $\text{cose}{{\text{c}}^{2}}x-{{\cot }^{2}}x=1$.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
