# Without using trigonometric tables, evaluate that:

\[\dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }}\]

Answer

Verified

363.9k+ views

Hint: Use the formulas of the trigonometric functions. These trigonometric formulas are $\tan x=\cot \left( 90-x \right)$, $\cot x=\dfrac{1}{\tan x}$ and $\text{cose}{{\text{c}}^{2}}x-{{\cot }^{2}}x=1$. Here, the angle x is in degree. Using these formulas, we can solve this question.

Complete step-by-step answer:

Before proceeding with the question, we must know all the formulas that will be required to solve this question.

In trigonometry, we have some formulas that relate tan and cot functions. These formulas are,

$\tan x=\cot \left( 90-x \right)............\left( 1 \right)$

$\cot x=\dfrac{1}{\tan x}...............\left( 2 \right)$

Also, in trigonometry we have an identity,

$\text{cose}{{\text{c}}^{2}}x-{{\cot }^{2}}x=1.................\left( 3 \right)$

In all the above 3 formulas, the angle x should be in degree.

In the question, we are required to evaluate \[\dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }}\]

In formula $\left( 1 \right)$, substituting x = 53, we can write \[\tan {{53}^{\circ }}=\cot \left( 90-53 \right)=\cot {{37}^{\circ }}\] and substituting x = 77, we can write \[\tan {{77}^{\circ }}=\cot \left( 90-77 \right)=\cot {{13}^{\circ }}\]. Substituting \[\tan {{53}^{\circ }}\] and \[\tan {{77}^{\circ }}\] in the above expression, we get,

\[\dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\cot {{37}^{\circ }}\cot {{13}^{\circ }}\]

In formula $\left( 2 \right)$, substituting x = 13, we get\[\cot {{13}^{\circ }}=\dfrac{1}{\tan {{13}^{\circ }}}\] and substituting x = 37, we get \[\cot {{37}^{\circ }}=\dfrac{1}{\tan {{37}^{\circ }}}\]. Substituting these in the above expression, we get,

\[\begin{align}

& \dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\dfrac{1}{\tan {{37}^{\circ }}}\dfrac{1}{\tan {{13}^{\circ }}} \\

& \Rightarrow \dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{45}^{\circ }} \\

& \Rightarrow \dfrac{2}{3}\left( \text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\cot {{58}^{\circ }}\tan {{32}^{\circ }} \right)-\dfrac{5}{3}\tan {{45}^{\circ }} \\

\end{align}\]

Using formula $\left( 1 \right)$, substituting $\tan {{32}^{\circ }}=\cot \left( 90-32 \right)=\cot {{32}^{\circ }}$ in the above expression, we get,

\[\dfrac{2}{3}\left( \text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }} \right)-\dfrac{5}{3}\tan {{45}^{\circ }}\]

From formula $\left( 3 \right)$, substituting x = 58, we get,

\[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\]

Substituting \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\] in the above expression, we get,

\[\begin{align}

& \dfrac{2}{3}\left( 1 \right)-\dfrac{5}{3}\tan {{45}^{\circ }} \\

& \Rightarrow \dfrac{2}{3}-\dfrac{5}{3}\tan {{45}^{\circ }} \\

\end{align}\]

Also, from trigonometry, we have \[\tan {{45}^{\circ }}=1\]. Substituting \[\tan {{45}^{\circ }}=1\] in the above equation, we get,

\[\begin{align}

& \dfrac{2}{3}-\dfrac{5}{3}\left( 1 \right) \\

& \Rightarrow \dfrac{2}{3}-\dfrac{5}{3} \\

& \Rightarrow \dfrac{-3}{3} \\

& \Rightarrow -1 \\

\end{align}\]

Hence, the answer of the trigonometric expression is -1.

Note: There is a possibility that one may commit a mistake while using the identity \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\]. It is a very common mistake that one may write this as \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}+{{\cot }^{2}}{{58}^{\circ }}=1\] instead of \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\]. To avoid this mistake, one should start from the identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ and divide both sides of the equation by ${{\sin }^{2}}x$. Then substitute $\dfrac{\cos x}{\sin x}=1$ and $\dfrac{1}{\sin x}=\text{cosecx}$. Substitute $\dfrac{\cos x}{\sin x}=1$ and $\dfrac{1}{\sin x}=\text{cosecx}$ in ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, we will get the identity $\text{cose}{{\text{c}}^{2}}x-{{\cot }^{2}}x=1$.

Complete step-by-step answer:

Before proceeding with the question, we must know all the formulas that will be required to solve this question.

In trigonometry, we have some formulas that relate tan and cot functions. These formulas are,

$\tan x=\cot \left( 90-x \right)............\left( 1 \right)$

$\cot x=\dfrac{1}{\tan x}...............\left( 2 \right)$

Also, in trigonometry we have an identity,

$\text{cose}{{\text{c}}^{2}}x-{{\cot }^{2}}x=1.................\left( 3 \right)$

In all the above 3 formulas, the angle x should be in degree.

In the question, we are required to evaluate \[\dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\tan {{53}^{\circ }}\tan {{77}^{\circ }}\]

In formula $\left( 1 \right)$, substituting x = 53, we can write \[\tan {{53}^{\circ }}=\cot \left( 90-53 \right)=\cot {{37}^{\circ }}\] and substituting x = 77, we can write \[\tan {{77}^{\circ }}=\cot \left( 90-77 \right)=\cot {{13}^{\circ }}\]. Substituting \[\tan {{53}^{\circ }}\] and \[\tan {{77}^{\circ }}\] in the above expression, we get,

\[\dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\cot {{37}^{\circ }}\cot {{13}^{\circ }}\]

In formula $\left( 2 \right)$, substituting x = 13, we get\[\cot {{13}^{\circ }}=\dfrac{1}{\tan {{13}^{\circ }}}\] and substituting x = 37, we get \[\cot {{37}^{\circ }}=\dfrac{1}{\tan {{37}^{\circ }}}\]. Substituting these in the above expression, we get,

\[\begin{align}

& \dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{13}^{\circ }}\tan {{37}^{\circ }}\tan {{45}^{\circ }}\dfrac{1}{\tan {{37}^{\circ }}}\dfrac{1}{\tan {{13}^{\circ }}} \\

& \Rightarrow \dfrac{2}{3}\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\dfrac{2}{3}\cot {{58}^{\circ }}\tan {{32}^{\circ }}-\dfrac{5}{3}\tan {{45}^{\circ }} \\

& \Rightarrow \dfrac{2}{3}\left( \text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-\cot {{58}^{\circ }}\tan {{32}^{\circ }} \right)-\dfrac{5}{3}\tan {{45}^{\circ }} \\

\end{align}\]

Using formula $\left( 1 \right)$, substituting $\tan {{32}^{\circ }}=\cot \left( 90-32 \right)=\cot {{32}^{\circ }}$ in the above expression, we get,

\[\dfrac{2}{3}\left( \text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }} \right)-\dfrac{5}{3}\tan {{45}^{\circ }}\]

From formula $\left( 3 \right)$, substituting x = 58, we get,

\[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\]

Substituting \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\] in the above expression, we get,

\[\begin{align}

& \dfrac{2}{3}\left( 1 \right)-\dfrac{5}{3}\tan {{45}^{\circ }} \\

& \Rightarrow \dfrac{2}{3}-\dfrac{5}{3}\tan {{45}^{\circ }} \\

\end{align}\]

Also, from trigonometry, we have \[\tan {{45}^{\circ }}=1\]. Substituting \[\tan {{45}^{\circ }}=1\] in the above equation, we get,

\[\begin{align}

& \dfrac{2}{3}-\dfrac{5}{3}\left( 1 \right) \\

& \Rightarrow \dfrac{2}{3}-\dfrac{5}{3} \\

& \Rightarrow \dfrac{-3}{3} \\

& \Rightarrow -1 \\

\end{align}\]

Hence, the answer of the trigonometric expression is -1.

Note: There is a possibility that one may commit a mistake while using the identity \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\]. It is a very common mistake that one may write this as \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}+{{\cot }^{2}}{{58}^{\circ }}=1\] instead of \[\text{cose}{{\text{c}}^{2}}{{58}^{\circ }}-{{\cot }^{2}}{{58}^{\circ }}=1\]. To avoid this mistake, one should start from the identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ and divide both sides of the equation by ${{\sin }^{2}}x$. Then substitute $\dfrac{\cos x}{\sin x}=1$ and $\dfrac{1}{\sin x}=\text{cosecx}$. Substitute $\dfrac{\cos x}{\sin x}=1$ and $\dfrac{1}{\sin x}=\text{cosecx}$ in ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, we will get the identity $\text{cose}{{\text{c}}^{2}}x-{{\cot }^{2}}x=1$.

Last updated date: 30th Sep 2023

â€¢

Total views: 363.9k

â€¢

Views today: 10.63k

Recently Updated Pages

What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE