Answer
Verified
493.5k+ views
Hint: In this question apply basic trigonometric properties such as $\sin \theta = \cos \left( {{{90}^0} - \theta } \right),{\text{ cos}}\theta = \sin \left( {{{90}^0} - \theta } \right),{\text{ sec}}\theta {\text{ = }}\dfrac{1}{{\cos \theta }}$, so use these concepts to reach the solution of the question.
Given equation is
$\dfrac{{\sin {{63}^0}}}{{\cos {{27}^0}}} + \dfrac{{\cos {{39}^0}}}{{\sin {{51}^0}}} - \sin {23^0}.\sec {67^0} + {\csc ^2}{30^0}$
Now as we know that
$\sin \theta = \cos \left( {{{90}^0} - \theta } \right),{\text{ cos}}\theta = \sin \left( {{{90}^0} - \theta } \right),{\text{ sec}}\theta {\text{ = }}\dfrac{1}{{\cos \theta }}$, so use these properties in above equation we have,
$\dfrac{{\cos \left( {{{90}^0} - {{63}^0}} \right)}}{{\cos {{27}^0}}} + \dfrac{{\sin \left( {{{90}^0} - {{39}^0}} \right)}}{{\sin {{51}^0}}} - \cos \left( {{{90}^0} - {{23}^0}} \right).\dfrac{1}{{\cos {{67}^0}}} + {\csc ^2}{30^0}$
$ \Rightarrow \dfrac{{\cos \left( {{{27}^0}} \right)}}{{\cos {{27}^0}}} + \dfrac{{\sin \left( {{{51}^0}} \right)}}{{\sin {{51}^0}}} - \cos \left( {{{67}^0}} \right).\dfrac{1}{{\cos {{67}^0}}} + {\csc ^2}{30^0}$
$
\Rightarrow 1 + 1 - 1 + {\csc ^2}{30^0} \\
= 1 + {\csc ^2}{30^0} \\
$
Now we know that $\csc {30^0} = 2$, so substitute this value in above equation we have
$ \Rightarrow 1 + {\csc ^2}{30^0} = 1 + {\left( 2 \right)^2} = 1 + 4 = 5$
So, this is the required answer of the given equation.
Note: In such types of questions the key concept we have to remember is that always remember all the basic trigonometric properties which is stated above then simplify the given equation according to these properties and then apply the value of $\csc {30^0} = 2$, and simplify, we will get the required value of the given equation which is the required answer.
Given equation is
$\dfrac{{\sin {{63}^0}}}{{\cos {{27}^0}}} + \dfrac{{\cos {{39}^0}}}{{\sin {{51}^0}}} - \sin {23^0}.\sec {67^0} + {\csc ^2}{30^0}$
Now as we know that
$\sin \theta = \cos \left( {{{90}^0} - \theta } \right),{\text{ cos}}\theta = \sin \left( {{{90}^0} - \theta } \right),{\text{ sec}}\theta {\text{ = }}\dfrac{1}{{\cos \theta }}$, so use these properties in above equation we have,
$\dfrac{{\cos \left( {{{90}^0} - {{63}^0}} \right)}}{{\cos {{27}^0}}} + \dfrac{{\sin \left( {{{90}^0} - {{39}^0}} \right)}}{{\sin {{51}^0}}} - \cos \left( {{{90}^0} - {{23}^0}} \right).\dfrac{1}{{\cos {{67}^0}}} + {\csc ^2}{30^0}$
$ \Rightarrow \dfrac{{\cos \left( {{{27}^0}} \right)}}{{\cos {{27}^0}}} + \dfrac{{\sin \left( {{{51}^0}} \right)}}{{\sin {{51}^0}}} - \cos \left( {{{67}^0}} \right).\dfrac{1}{{\cos {{67}^0}}} + {\csc ^2}{30^0}$
$
\Rightarrow 1 + 1 - 1 + {\csc ^2}{30^0} \\
= 1 + {\csc ^2}{30^0} \\
$
Now we know that $\csc {30^0} = 2$, so substitute this value in above equation we have
$ \Rightarrow 1 + {\csc ^2}{30^0} = 1 + {\left( 2 \right)^2} = 1 + 4 = 5$
So, this is the required answer of the given equation.
Note: In such types of questions the key concept we have to remember is that always remember all the basic trigonometric properties which is stated above then simplify the given equation according to these properties and then apply the value of $\csc {30^0} = 2$, and simplify, we will get the required value of the given equation which is the required answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE