
Without using trigonometric tables evaluate:
$\dfrac{{\sin {{63}^0}}}{{\cos {{27}^0}}} + \dfrac{{\cos {{39}^0}}}{{\sin {{51}^0}}} - \sin {23^0}.\sec {67^0} + {\csc ^2}{30^0}$.
Answer
605.1k+ views
Hint: In this question apply basic trigonometric properties such as $\sin \theta = \cos \left( {{{90}^0} - \theta } \right),{\text{ cos}}\theta = \sin \left( {{{90}^0} - \theta } \right),{\text{ sec}}\theta {\text{ = }}\dfrac{1}{{\cos \theta }}$, so use these concepts to reach the solution of the question.
Given equation is
$\dfrac{{\sin {{63}^0}}}{{\cos {{27}^0}}} + \dfrac{{\cos {{39}^0}}}{{\sin {{51}^0}}} - \sin {23^0}.\sec {67^0} + {\csc ^2}{30^0}$
Now as we know that
$\sin \theta = \cos \left( {{{90}^0} - \theta } \right),{\text{ cos}}\theta = \sin \left( {{{90}^0} - \theta } \right),{\text{ sec}}\theta {\text{ = }}\dfrac{1}{{\cos \theta }}$, so use these properties in above equation we have,
$\dfrac{{\cos \left( {{{90}^0} - {{63}^0}} \right)}}{{\cos {{27}^0}}} + \dfrac{{\sin \left( {{{90}^0} - {{39}^0}} \right)}}{{\sin {{51}^0}}} - \cos \left( {{{90}^0} - {{23}^0}} \right).\dfrac{1}{{\cos {{67}^0}}} + {\csc ^2}{30^0}$
$ \Rightarrow \dfrac{{\cos \left( {{{27}^0}} \right)}}{{\cos {{27}^0}}} + \dfrac{{\sin \left( {{{51}^0}} \right)}}{{\sin {{51}^0}}} - \cos \left( {{{67}^0}} \right).\dfrac{1}{{\cos {{67}^0}}} + {\csc ^2}{30^0}$
$
\Rightarrow 1 + 1 - 1 + {\csc ^2}{30^0} \\
= 1 + {\csc ^2}{30^0} \\
$
Now we know that $\csc {30^0} = 2$, so substitute this value in above equation we have
$ \Rightarrow 1 + {\csc ^2}{30^0} = 1 + {\left( 2 \right)^2} = 1 + 4 = 5$
So, this is the required answer of the given equation.
Note: In such types of questions the key concept we have to remember is that always remember all the basic trigonometric properties which is stated above then simplify the given equation according to these properties and then apply the value of $\csc {30^0} = 2$, and simplify, we will get the required value of the given equation which is the required answer.
Given equation is
$\dfrac{{\sin {{63}^0}}}{{\cos {{27}^0}}} + \dfrac{{\cos {{39}^0}}}{{\sin {{51}^0}}} - \sin {23^0}.\sec {67^0} + {\csc ^2}{30^0}$
Now as we know that
$\sin \theta = \cos \left( {{{90}^0} - \theta } \right),{\text{ cos}}\theta = \sin \left( {{{90}^0} - \theta } \right),{\text{ sec}}\theta {\text{ = }}\dfrac{1}{{\cos \theta }}$, so use these properties in above equation we have,
$\dfrac{{\cos \left( {{{90}^0} - {{63}^0}} \right)}}{{\cos {{27}^0}}} + \dfrac{{\sin \left( {{{90}^0} - {{39}^0}} \right)}}{{\sin {{51}^0}}} - \cos \left( {{{90}^0} - {{23}^0}} \right).\dfrac{1}{{\cos {{67}^0}}} + {\csc ^2}{30^0}$
$ \Rightarrow \dfrac{{\cos \left( {{{27}^0}} \right)}}{{\cos {{27}^0}}} + \dfrac{{\sin \left( {{{51}^0}} \right)}}{{\sin {{51}^0}}} - \cos \left( {{{67}^0}} \right).\dfrac{1}{{\cos {{67}^0}}} + {\csc ^2}{30^0}$
$
\Rightarrow 1 + 1 - 1 + {\csc ^2}{30^0} \\
= 1 + {\csc ^2}{30^0} \\
$
Now we know that $\csc {30^0} = 2$, so substitute this value in above equation we have
$ \Rightarrow 1 + {\csc ^2}{30^0} = 1 + {\left( 2 \right)^2} = 1 + 4 = 5$
So, this is the required answer of the given equation.
Note: In such types of questions the key concept we have to remember is that always remember all the basic trigonometric properties which is stated above then simplify the given equation according to these properties and then apply the value of $\csc {30^0} = 2$, and simplify, we will get the required value of the given equation which is the required answer.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
Who was the first woman to receive Bharat Ratna?

Who Won 36 Oscar Awards? Record Holder Revealed

The time gap between two sessions of the Parliament class 10 social science CBSE

What is Commercial Farming ? What are its types ? Explain them with Examples

Join the following sentences to form an illative compound class 10 english CBSE

What is coalition government

