Answer
Verified
495.9k+ views
Hint:- If the denominator of a rational number can be factored in multiples of 2 and 5, then it will have terminating decimal expansion, else a non-terminating repeating decimal expansion.
Given,$\dfrac{{23}}{{{2^3}{5^2}}}$ For any rational number $\dfrac{{\text{p}}}{{\text{q}}}$, if on factoring the denominator q we get, ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$ then the rational number will have a terminating decimal expansion. It is valid even when m = 0 or n = 0. But both cannot be equal to zero for the same q.
Now, we have $\dfrac{{23}}{{{2^3}{5^2}}}$, the denominator is already factored and is in the form of ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$. So, it will have a terminating decimal expansion.
Now, for finding the number of digits after which the decimal expansion terminates. There is a simple method for the same. According to it , the number of digits after which the decimal expansion terminates is equal to either m ( when m<=n) , or n(when n<=m).
Now, comparing ${2^3}{5^2}$ with ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$. We get, m = 3 and n = 2. The smallest number in m and n is n i.e. 2. Hence, the number of digits after which the decimal expansion terminates is 2.
Note:- In these types of questions , the key concept is on factoring the denominator if we get ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$ . Then only, the rational number can have terminating decimal expansion.
Given,$\dfrac{{23}}{{{2^3}{5^2}}}$ For any rational number $\dfrac{{\text{p}}}{{\text{q}}}$, if on factoring the denominator q we get, ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$ then the rational number will have a terminating decimal expansion. It is valid even when m = 0 or n = 0. But both cannot be equal to zero for the same q.
Now, we have $\dfrac{{23}}{{{2^3}{5^2}}}$, the denominator is already factored and is in the form of ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$. So, it will have a terminating decimal expansion.
Now, for finding the number of digits after which the decimal expansion terminates. There is a simple method for the same. According to it , the number of digits after which the decimal expansion terminates is equal to either m ( when m<=n) , or n(when n<=m).
Now, comparing ${2^3}{5^2}$ with ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$. We get, m = 3 and n = 2. The smallest number in m and n is n i.e. 2. Hence, the number of digits after which the decimal expansion terminates is 2.
Note:- In these types of questions , the key concept is on factoring the denominator if we get ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$ . Then only, the rational number can have terminating decimal expansion.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE