Which point on y-axis is equidistant from $\left( {2,3} \right)$ and $\left( { - 4,1} \right)$?
Last updated date: 18th Mar 2023
•
Total views: 307.8k
•
Views today: 7.87k
Answer
307.8k+ views
Hint- Here, we will be using distance formula.
Given, we have two points A$\left( {2,3} \right)$ and B$\left( { - 4,1} \right)$.
Since, we know that any point on the y-axis will have its x-coordinate as zero.
Let P$\left( {0,y} \right)$be that point that will lie on the y-axis.
We know that according to distance formula, the distance between any two points ${\text{A}}\left( {a,b} \right)$ and $B\left( {c,d} \right)$is given by $d = \sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} $
Also given that the point P$\left( {0,y} \right)$is equidistant from the points A$\left( {2,3} \right)$ and B$\left( { - 4,1} \right)$ which means that the distances AP and BP are equal.
i.e. $
{\text{AP}} = {\text{BP}} \Rightarrow \sqrt {{{\left( {0 - 2} \right)}^2} + {{\left( {y - 3} \right)}^2}} = \sqrt {{{\left[ {0 - \left( { - 4} \right)} \right]}^2} + {{\left( {y - 1} \right)}^2}} \\
\Rightarrow \sqrt {4 + {y^2} + 9 - 6y} = \sqrt {16 + {y^2} + 1 - 2y} \\
$
Now squaring both the sides of above equation, we get
$
\Rightarrow 4 + {y^2} + 9 - 6y = 16 + {y^2} + 1 - 2y \Rightarrow 6y - 2y = 4 + 9 - 1 - 16 \\
\Rightarrow 4y = - 4 \Rightarrow y = - 1 \\
$
Therefore, the required point on the y-axis is P$\left( {0, - 1} \right)$.
Note- In this problem if the point which is equidistant from the two given points instead of lying on y-axis, lies on x-axis then the coordinates of the required point would have been assumed as P$\left( {x,0} \right)$ because any point lying on the x-axis have its y coordinate as zero.
Given, we have two points A$\left( {2,3} \right)$ and B$\left( { - 4,1} \right)$.
Since, we know that any point on the y-axis will have its x-coordinate as zero.
Let P$\left( {0,y} \right)$be that point that will lie on the y-axis.
We know that according to distance formula, the distance between any two points ${\text{A}}\left( {a,b} \right)$ and $B\left( {c,d} \right)$is given by $d = \sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} $
Also given that the point P$\left( {0,y} \right)$is equidistant from the points A$\left( {2,3} \right)$ and B$\left( { - 4,1} \right)$ which means that the distances AP and BP are equal.
i.e. $
{\text{AP}} = {\text{BP}} \Rightarrow \sqrt {{{\left( {0 - 2} \right)}^2} + {{\left( {y - 3} \right)}^2}} = \sqrt {{{\left[ {0 - \left( { - 4} \right)} \right]}^2} + {{\left( {y - 1} \right)}^2}} \\
\Rightarrow \sqrt {4 + {y^2} + 9 - 6y} = \sqrt {16 + {y^2} + 1 - 2y} \\
$
Now squaring both the sides of above equation, we get
$
\Rightarrow 4 + {y^2} + 9 - 6y = 16 + {y^2} + 1 - 2y \Rightarrow 6y - 2y = 4 + 9 - 1 - 16 \\
\Rightarrow 4y = - 4 \Rightarrow y = - 1 \\
$
Therefore, the required point on the y-axis is P$\left( {0, - 1} \right)$.
Note- In this problem if the point which is equidistant from the two given points instead of lying on y-axis, lies on x-axis then the coordinates of the required point would have been assumed as P$\left( {x,0} \right)$ because any point lying on the x-axis have its y coordinate as zero.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
