
Which point on y-axis is equidistant from $\left( {2,3} \right)$ and $\left( { - 4,1} \right)$?
Answer
599.7k+ views
Hint- Here, we will be using distance formula.
Given, we have two points A$\left( {2,3} \right)$ and B$\left( { - 4,1} \right)$.
Since, we know that any point on the y-axis will have its x-coordinate as zero.
Let P$\left( {0,y} \right)$be that point that will lie on the y-axis.
We know that according to distance formula, the distance between any two points ${\text{A}}\left( {a,b} \right)$ and $B\left( {c,d} \right)$is given by $d = \sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} $
Also given that the point P$\left( {0,y} \right)$is equidistant from the points A$\left( {2,3} \right)$ and B$\left( { - 4,1} \right)$ which means that the distances AP and BP are equal.
i.e. $
{\text{AP}} = {\text{BP}} \Rightarrow \sqrt {{{\left( {0 - 2} \right)}^2} + {{\left( {y - 3} \right)}^2}} = \sqrt {{{\left[ {0 - \left( { - 4} \right)} \right]}^2} + {{\left( {y - 1} \right)}^2}} \\
\Rightarrow \sqrt {4 + {y^2} + 9 - 6y} = \sqrt {16 + {y^2} + 1 - 2y} \\
$
Now squaring both the sides of above equation, we get
$
\Rightarrow 4 + {y^2} + 9 - 6y = 16 + {y^2} + 1 - 2y \Rightarrow 6y - 2y = 4 + 9 - 1 - 16 \\
\Rightarrow 4y = - 4 \Rightarrow y = - 1 \\
$
Therefore, the required point on the y-axis is P$\left( {0, - 1} \right)$.
Note- In this problem if the point which is equidistant from the two given points instead of lying on y-axis, lies on x-axis then the coordinates of the required point would have been assumed as P$\left( {x,0} \right)$ because any point lying on the x-axis have its y coordinate as zero.
Given, we have two points A$\left( {2,3} \right)$ and B$\left( { - 4,1} \right)$.
Since, we know that any point on the y-axis will have its x-coordinate as zero.
Let P$\left( {0,y} \right)$be that point that will lie on the y-axis.
We know that according to distance formula, the distance between any two points ${\text{A}}\left( {a,b} \right)$ and $B\left( {c,d} \right)$is given by $d = \sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} $
Also given that the point P$\left( {0,y} \right)$is equidistant from the points A$\left( {2,3} \right)$ and B$\left( { - 4,1} \right)$ which means that the distances AP and BP are equal.
i.e. $
{\text{AP}} = {\text{BP}} \Rightarrow \sqrt {{{\left( {0 - 2} \right)}^2} + {{\left( {y - 3} \right)}^2}} = \sqrt {{{\left[ {0 - \left( { - 4} \right)} \right]}^2} + {{\left( {y - 1} \right)}^2}} \\
\Rightarrow \sqrt {4 + {y^2} + 9 - 6y} = \sqrt {16 + {y^2} + 1 - 2y} \\
$
Now squaring both the sides of above equation, we get
$
\Rightarrow 4 + {y^2} + 9 - 6y = 16 + {y^2} + 1 - 2y \Rightarrow 6y - 2y = 4 + 9 - 1 - 16 \\
\Rightarrow 4y = - 4 \Rightarrow y = - 1 \\
$
Therefore, the required point on the y-axis is P$\left( {0, - 1} \right)$.
Note- In this problem if the point which is equidistant from the two given points instead of lying on y-axis, lies on x-axis then the coordinates of the required point would have been assumed as P$\left( {x,0} \right)$ because any point lying on the x-axis have its y coordinate as zero.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Which is the main party in the National Democratic class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write an application to the principal requesting five class 10 english CBSE

