# Which of the following is an irrational number?

$

{\text{a}}{\text{. }}\sqrt {41616} \\

{\text{b}}{\text{. 23}}{\text{.232323}}........... \\

{\text{c}}{\text{. }}\dfrac{{{{\left( {1 + \sqrt 3 } \right)}^3} - {{\left( {1 - \sqrt 3 } \right)}^3}}}{{\sqrt 3 }} \\

{\text{d}}{\text{. 23}}{\text{.10100100010000}}........ \\

$

Last updated date: 27th Mar 2023

•

Total views: 310.5k

•

Views today: 7.87k

Answer

Verified

310.5k+ views

Hint: - An irrational number cannot be written in the form of $\dfrac{p}{q},q \ne 0$and it has non-repeating or non-terminating sequence after decimal place.

Check Option (a)

$ \Rightarrow \sqrt {41616} = \sqrt {{{\left( {204} \right)}^2}} = 204$

So, 204 is a rational number.

$ \Rightarrow \sqrt {41616} $ Is a rational number.

Now check Option (b)

$

\Rightarrow 23.232323........ \\

{\text{Let, }}y = 23.232323.......{\text{ }}..................\left( 1 \right) \\

$

Multiply by 100 in both sides

$ \Rightarrow 100y = 2323.2323.......{\text{ }}..................\left( 2 \right)$

Subtract equation (2) from (1)

$

\Rightarrow 99y = 2323.2323...... - 23.232323....... \\

\Rightarrow 99y = 2300 \Rightarrow y = \dfrac{{2300}}{{99}} \\

$

So, 23.2323……….. Is also a rational number.

Now check Option (c)

As we know${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3a{b^2} + 3{a^2}b,{\text{ }}{\left( {a - b} \right)^3} = {a^3} - {b^3} + 3a{b^2} - 3{a^2}b$, so use these properties we have

$\dfrac{{{{\left( {1 + \sqrt 3 } \right)}^3} - {{\left( {1 - \sqrt 3 } \right)}^3}}}{{\sqrt 3 }} \Rightarrow \dfrac{{1 + 3\sqrt 3 + 3\sqrt 3 + 9 - \left( {1 - 3\sqrt 3 - 3\sqrt 3 + 9} \right)}}{{\sqrt 3 }} = \dfrac{{12\sqrt 3 }}{{\sqrt 3 }} = 12$

So, $\dfrac{{{{\left( {1 + \sqrt 3 } \right)}^3} - {{\left( {1 - \sqrt 3 } \right)}^3}}}{{\sqrt 3 }}$ is also a rational number.

Now check Option (d)

${\text{23}}{\text{.10100100010000}}.............$

Since this number is non-repeating and non-terminating and cannot be expressed as a fraction.

$ \Rightarrow $It is an irrational number.

Hence option (d) is correct.

Note: - A rational number is a number that can be expressed as the quotient or fraction $\dfrac{p}{q},q \ne 0$of two integers, a numerator p and a non-zero denominator q. since q may be equal to 1, every integer is a rational number. An irrational number is a number that cannot be expressed as a fraction for any integers, so one by one check all options then we will get the required answer.

Check Option (a)

$ \Rightarrow \sqrt {41616} = \sqrt {{{\left( {204} \right)}^2}} = 204$

So, 204 is a rational number.

$ \Rightarrow \sqrt {41616} $ Is a rational number.

Now check Option (b)

$

\Rightarrow 23.232323........ \\

{\text{Let, }}y = 23.232323.......{\text{ }}..................\left( 1 \right) \\

$

Multiply by 100 in both sides

$ \Rightarrow 100y = 2323.2323.......{\text{ }}..................\left( 2 \right)$

Subtract equation (2) from (1)

$

\Rightarrow 99y = 2323.2323...... - 23.232323....... \\

\Rightarrow 99y = 2300 \Rightarrow y = \dfrac{{2300}}{{99}} \\

$

So, 23.2323……….. Is also a rational number.

Now check Option (c)

As we know${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3a{b^2} + 3{a^2}b,{\text{ }}{\left( {a - b} \right)^3} = {a^3} - {b^3} + 3a{b^2} - 3{a^2}b$, so use these properties we have

$\dfrac{{{{\left( {1 + \sqrt 3 } \right)}^3} - {{\left( {1 - \sqrt 3 } \right)}^3}}}{{\sqrt 3 }} \Rightarrow \dfrac{{1 + 3\sqrt 3 + 3\sqrt 3 + 9 - \left( {1 - 3\sqrt 3 - 3\sqrt 3 + 9} \right)}}{{\sqrt 3 }} = \dfrac{{12\sqrt 3 }}{{\sqrt 3 }} = 12$

So, $\dfrac{{{{\left( {1 + \sqrt 3 } \right)}^3} - {{\left( {1 - \sqrt 3 } \right)}^3}}}{{\sqrt 3 }}$ is also a rational number.

Now check Option (d)

${\text{23}}{\text{.10100100010000}}.............$

Since this number is non-repeating and non-terminating and cannot be expressed as a fraction.

$ \Rightarrow $It is an irrational number.

Hence option (d) is correct.

Note: - A rational number is a number that can be expressed as the quotient or fraction $\dfrac{p}{q},q \ne 0$of two integers, a numerator p and a non-zero denominator q. since q may be equal to 1, every integer is a rational number. An irrational number is a number that cannot be expressed as a fraction for any integers, so one by one check all options then we will get the required answer.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE