
Which of the following is a linear polynomial?
(a) \[p\left( x \right) = x\]
(b) \[p\left( x \right) = y\]
(c) \[p\left( y \right) = x\]
(d) \[p\left( y \right) = 1\]
Answer
557.7k+ views
Hint: Here, we need to find which of the given options is a linear polynomial. We will use the concept of a linear polynomial to check whether the given options are a linear polynomial or not. A linear polynomial is a polynomial whose highest degree is 1. Degree is the power of the variable in the polynomial.
Complete step-by-step answer:
A linear polynomial in \[x\] is of the form \[p\left( x \right) = ax + b\], where \[a\] is the coefficient of \[x\], \[b\] is the constant, and \[a \ne 0\]. Here, the highest degree of \[x\] is 1.
Now, we will check which of the options is a linear polynomial.
The polynomial \[p\left( x \right) = x\] is a polynomial in the variable \[x\].
Rewriting the polynomial, we get
\[ \Rightarrow p\left( x \right) = {x^1}\]
Here, the degree of \[x\] is 1.
Therefore, \[p\left( x \right) = x\] is a linear polynomial in \[x\].
Let us now check the other options as well.
The polynomial \[p\left( x \right) = y\] is a polynomial in the variable \[x\].
Rewriting the polynomial, we get
\[\begin{array}{l} \Rightarrow p\left( x \right) = 0 + y\\ \Rightarrow p\left( x \right) = 0 \times x + y\\ \Rightarrow p\left( x \right) = 0{x^1} + y\end{array}\]
We can observe that \[p\left( x \right) = y\] can be written in the form \[p\left( x \right) = ax + b\] such that the highest degree of \[x\] is 1.
However, since \[a = 0\], this is not a linear polynomial.
Therefore, \[p\left( x \right) = y\] is not a linear polynomial.
Thus, option (b) is incorrect.
The polynomial \[p\left( y \right) = x\] is a polynomial in the variable \[y\].
A linear polynomial in \[y\] will be of the form \[p\left( y \right) = ay + b\], where \[a \ne 0\].
Rewriting the polynomial, we get
\[\begin{array}{l} \Rightarrow p\left( y \right) = 0 + x\\ \Rightarrow p\left( y \right) = 0 \times y + x\\ \Rightarrow p\left( y \right) = 0{y^1} + x\end{array}\]
We can observe that \[p\left( y \right) = x\] can be written in the form \[p\left( y \right) = ay + b\] such that the highest degree of \[y\] is 1.
However, since \[a = 0\], this is not a linear polynomial.
Therefore, \[p\left( y \right) = x\] is not a linear polynomial.
Thus, option (c) is incorrect.
The polynomial \[p\left( y \right) = 1\] is a polynomial in the variable \[y\].
A linear polynomial in \[y\] will be of the form \[p\left( y \right) = ay + b\], where \[a \ne 0\].
Rewriting the polynomial, we get
\[\begin{array}{l} \Rightarrow p\left( y \right) = 0 + 1\\ \Rightarrow p\left( y \right) = 0 \times y + 1\\ \Rightarrow p\left( y \right) = 0{y^1} + 1\end{array}\]
We can observe that \[p\left( y \right) = 1\] can be written in the form \[p\left( y \right) = ay + b\] such that the highest degree of \[y\] is 1.
However, since \[a = 0\], this is not a linear polynomial.
Therefore, \[p\left( y \right) = 1\] is not a linear polynomial.
Thus, option (d) is incorrect.
Therefore, the only correct option is option (a) \[p\left( x \right) = x\].
Note: Here we have asked to find linear polynomials. For this, first we need to understand the meaning of polynomial. A polynomial is an expression consisting of variables and constants, involving some operations between them, like addition, subtraction, multiplication, or division. Some examples of polynomials are \[3x + 2\] and \[3y + 6\].A polynomial in \[x\] is usually denoted by \[p\left( x \right)\].We have also used the property of exponents \[{a^0} = 1\] to rewrite the given polynomials in the form \[p\left( x \right) = ax + b\] or \[p\left( y \right) = ay + b\]. According to this property, any number raised to the power 0 is equal to 1.
Complete step-by-step answer:
A linear polynomial in \[x\] is of the form \[p\left( x \right) = ax + b\], where \[a\] is the coefficient of \[x\], \[b\] is the constant, and \[a \ne 0\]. Here, the highest degree of \[x\] is 1.
Now, we will check which of the options is a linear polynomial.
The polynomial \[p\left( x \right) = x\] is a polynomial in the variable \[x\].
Rewriting the polynomial, we get
\[ \Rightarrow p\left( x \right) = {x^1}\]
Here, the degree of \[x\] is 1.
Therefore, \[p\left( x \right) = x\] is a linear polynomial in \[x\].
Let us now check the other options as well.
The polynomial \[p\left( x \right) = y\] is a polynomial in the variable \[x\].
Rewriting the polynomial, we get
\[\begin{array}{l} \Rightarrow p\left( x \right) = 0 + y\\ \Rightarrow p\left( x \right) = 0 \times x + y\\ \Rightarrow p\left( x \right) = 0{x^1} + y\end{array}\]
We can observe that \[p\left( x \right) = y\] can be written in the form \[p\left( x \right) = ax + b\] such that the highest degree of \[x\] is 1.
However, since \[a = 0\], this is not a linear polynomial.
Therefore, \[p\left( x \right) = y\] is not a linear polynomial.
Thus, option (b) is incorrect.
The polynomial \[p\left( y \right) = x\] is a polynomial in the variable \[y\].
A linear polynomial in \[y\] will be of the form \[p\left( y \right) = ay + b\], where \[a \ne 0\].
Rewriting the polynomial, we get
\[\begin{array}{l} \Rightarrow p\left( y \right) = 0 + x\\ \Rightarrow p\left( y \right) = 0 \times y + x\\ \Rightarrow p\left( y \right) = 0{y^1} + x\end{array}\]
We can observe that \[p\left( y \right) = x\] can be written in the form \[p\left( y \right) = ay + b\] such that the highest degree of \[y\] is 1.
However, since \[a = 0\], this is not a linear polynomial.
Therefore, \[p\left( y \right) = x\] is not a linear polynomial.
Thus, option (c) is incorrect.
The polynomial \[p\left( y \right) = 1\] is a polynomial in the variable \[y\].
A linear polynomial in \[y\] will be of the form \[p\left( y \right) = ay + b\], where \[a \ne 0\].
Rewriting the polynomial, we get
\[\begin{array}{l} \Rightarrow p\left( y \right) = 0 + 1\\ \Rightarrow p\left( y \right) = 0 \times y + 1\\ \Rightarrow p\left( y \right) = 0{y^1} + 1\end{array}\]
We can observe that \[p\left( y \right) = 1\] can be written in the form \[p\left( y \right) = ay + b\] such that the highest degree of \[y\] is 1.
However, since \[a = 0\], this is not a linear polynomial.
Therefore, \[p\left( y \right) = 1\] is not a linear polynomial.
Thus, option (d) is incorrect.
Therefore, the only correct option is option (a) \[p\left( x \right) = x\].
Note: Here we have asked to find linear polynomials. For this, first we need to understand the meaning of polynomial. A polynomial is an expression consisting of variables and constants, involving some operations between them, like addition, subtraction, multiplication, or division. Some examples of polynomials are \[3x + 2\] and \[3y + 6\].A polynomial in \[x\] is usually denoted by \[p\left( x \right)\].We have also used the property of exponents \[{a^0} = 1\] to rewrite the given polynomials in the form \[p\left( x \right) = ax + b\] or \[p\left( y \right) = ay + b\]. According to this property, any number raised to the power 0 is equal to 1.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

