Answer

Verified

337.5k+ views

**Hint:**In this problem we need to calculate the number of ways to select the students from a class. First, we will consider that number of students as $n$ and the number of students to choose as $r$. In permutation and combinations, we have the formula for number of ways to choose $r$ things from $n$ is $C\left( n,r \right)={}^{n}{{C}_{r}}$. Now we will use this formula and substitute all the formulas we have in the problem. After that we will simplify the calculated value by using the formula ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$. Here we will use the formulas $n!=n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right).....3\times 2\times 1$ and $n!=n\left( n-1 \right)!=n\left( n-1 \right)\left( n-2 \right)!=....$ to simplify the above fraction and to get the required result.

**Complete step by step solution:**

Given that,

There are $10$ students in the class.

We are assuming that the number of students is $n=10$.

From the class the advisor has to pick $3$ students.

We are assuming that the number of students to choose is $r=3$.

We know that the number of ways to choose $r$ things from $n$ is $C\left( n,r \right)={}^{n}{{C}_{r}}$. Hence, we can write

$\Rightarrow C\left( 10,3 \right)={}^{10}{{C}_{3}}$

We have the formula ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$. Applying this formula in the above equation, then we can write

$\begin{align}

& \Rightarrow C\left( 10,3 \right)=\dfrac{10!}{3!\times \left( 10-3 \right)!} \\

& \Rightarrow C\left( 10,3 \right)=\dfrac{10!}{3!\times 7!} \\

\end{align}$

From the formula $n!=n\left( n-1 \right)!=n\left( n-1 \right)\left( n-2 \right)!=....$, we are going to write the value $10!$ as $10!=10\left( 10-1 \right)\left( 10-2 \right)\left( 10-3 \right)!=10\times 9\times 8\times 7!$ in the above equation, then we will get

$\Rightarrow C\left( 10,3 \right)=\dfrac{10\times 9\times 8\times 7!}{3!\times 7!}$

Cancelling the $7!$ which is in both numerator and denominator, then we will have

$\Rightarrow C\left( 10,3 \right)=\dfrac{720}{3!}$

Using the formula $n!=n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right).....3\times 2\times 1$ in the above equation, then we will get

$\begin{align}

& \Rightarrow C\left( 10,3 \right)=\dfrac{720}{3\times 2\times 1} \\

& \Rightarrow C\left( 10,3 \right)=120 \\

\end{align}$

Hence the advisor can choose $3$ students from a class of $10$ in $120$ ways.

**Note:**

In this problem they don’t have mentioned whether the students are for the same task or different task. So, we assumed that the students are for the same task and used combinations. If they have mentioned that the students are for different tasks then we need to use the permutations and we have to calculate the value of $P\left( n,r \right)=P\left( 10,3 \right)$.

Recently Updated Pages

Three beakers labelled as A B and C each containing 25 mL of water were taken A small amount of NaOH anhydrous CuSO4 and NaCl were added to the beakers A B and C respectively It was observed that there was an increase in the temperature of the solutions contained in beakers A and B whereas in case of beaker C the temperature of the solution falls Which one of the following statements isarecorrect i In beakers A and B exothermic process has occurred ii In beakers A and B endothermic process has occurred iii In beaker C exothermic process has occurred iv In beaker C endothermic process has occurred

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write a stanza wise summary of money madness class 11 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Which neighbouring country does not share a boundary class 9 social science CBSE

What is Whales collective noun class 10 english CBSE