Water is dripping out from a conical funnel at the uniform rate of $4c{m^3}/{\text{sec}}$ . When the slant height of the water is $3cm$ , find the rate of the decrease of the slant height of the water, given that the vertical angle of the funnel is ${120^ \circ }$ .
Answer
Verified
508.5k+ views
Hint: Apply the derivative methods. Rate of decrease of volume is given to us. Use that information.
It’s given that the vertical angle is ${120^ \circ }$ so half of it will be ${60^ \circ }$ . Slant height l is given to us as $3cm$ . Let the height be h and radius be r. The question says, water is dripping out from a conical funnel at the uniform rate of $4c{m^3}/{\text{sec}}$ . In case of a full canonical funnel with water, we say volume is equal to the water present in the funnel. Since, water is decreasing with the uniform rate then we can say $\dfrac{{dV}}{{dt}} = - 4$ . The unit $c{m^3}/{\text{sec}}$ also confirms the fact that it’s nothing but volume. One might think that why the negative sign we are taking? It's because of the fact that the water is decreasing by time. For that decrement, we are using negative signs. Now,
$
\sin {60^ \circ } = \dfrac{r}{l} \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{r}{l} \Rightarrow r = \dfrac{{\sqrt 3 l}}{2} \\
\cos {60^ \circ } = \dfrac{h}{l} \Rightarrow \dfrac{1}{2} = \dfrac{h}{l} \Rightarrow h = \dfrac{l}{2} \\
$
We know the formula for volume of the cone,
\[
V = \dfrac{1}{3}\pi {r^2}h \\
\Rightarrow V = \dfrac{1}{3}\pi {(\dfrac{{\sqrt 3 l}}{2})^2}\dfrac{l}{2}{\text{ }}[r = \dfrac{{\sqrt 3 l}}{2},h = \dfrac{l}{2}] \\
\Rightarrow V = \dfrac{1}{{{3}}} \times \pi \times \dfrac{{{3}{l^2}}}{4} \times \dfrac{l}{2} \\
\Rightarrow V = \dfrac{1}{8}\pi {l^3} \\
\]
On differentiating we’ll be getting,
$
\dfrac{{dV}}{{dt}} = \dfrac{\pi }{8}3{l^2}\dfrac{{dl}}{{dt}} \\
\Rightarrow - 4 = \dfrac{\pi }{8}3{(3)^2}\dfrac{{dl}}{{dt}}{\text{ }}[\dfrac{{dV}}{{dt}} = - 4c{m^3}/\sec ,l = 3 cm] \\
\Rightarrow \dfrac{{dl}}{{dt}} = \dfrac{{ - 4 \times 8}}{{27\pi }} \\
\Rightarrow \dfrac{{dl}}{{dt}} = \dfrac{{ - 32}}{{27\pi }} \\
$
Hence, the rate of the decrease of the slant height of the water is $\dfrac{{ - 32}}{{27\pi }}$ .
Note: The toughest part in this question is to recognise the concept. Once you get it as the question of rates then half of the question is finished there itself. After that, we need to find the rate given to us and then use its formula. It’ll lead us to the solution.
It’s given that the vertical angle is ${120^ \circ }$ so half of it will be ${60^ \circ }$ . Slant height l is given to us as $3cm$ . Let the height be h and radius be r. The question says, water is dripping out from a conical funnel at the uniform rate of $4c{m^3}/{\text{sec}}$ . In case of a full canonical funnel with water, we say volume is equal to the water present in the funnel. Since, water is decreasing with the uniform rate then we can say $\dfrac{{dV}}{{dt}} = - 4$ . The unit $c{m^3}/{\text{sec}}$ also confirms the fact that it’s nothing but volume. One might think that why the negative sign we are taking? It's because of the fact that the water is decreasing by time. For that decrement, we are using negative signs. Now,
$
\sin {60^ \circ } = \dfrac{r}{l} \Rightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{r}{l} \Rightarrow r = \dfrac{{\sqrt 3 l}}{2} \\
\cos {60^ \circ } = \dfrac{h}{l} \Rightarrow \dfrac{1}{2} = \dfrac{h}{l} \Rightarrow h = \dfrac{l}{2} \\
$
We know the formula for volume of the cone,
\[
V = \dfrac{1}{3}\pi {r^2}h \\
\Rightarrow V = \dfrac{1}{3}\pi {(\dfrac{{\sqrt 3 l}}{2})^2}\dfrac{l}{2}{\text{ }}[r = \dfrac{{\sqrt 3 l}}{2},h = \dfrac{l}{2}] \\
\Rightarrow V = \dfrac{1}{{{3}}} \times \pi \times \dfrac{{{3}{l^2}}}{4} \times \dfrac{l}{2} \\
\Rightarrow V = \dfrac{1}{8}\pi {l^3} \\
\]
On differentiating we’ll be getting,
$
\dfrac{{dV}}{{dt}} = \dfrac{\pi }{8}3{l^2}\dfrac{{dl}}{{dt}} \\
\Rightarrow - 4 = \dfrac{\pi }{8}3{(3)^2}\dfrac{{dl}}{{dt}}{\text{ }}[\dfrac{{dV}}{{dt}} = - 4c{m^3}/\sec ,l = 3 cm] \\
\Rightarrow \dfrac{{dl}}{{dt}} = \dfrac{{ - 4 \times 8}}{{27\pi }} \\
\Rightarrow \dfrac{{dl}}{{dt}} = \dfrac{{ - 32}}{{27\pi }} \\
$
Hence, the rate of the decrease of the slant height of the water is $\dfrac{{ - 32}}{{27\pi }}$ .
Note: The toughest part in this question is to recognise the concept. Once you get it as the question of rates then half of the question is finished there itself. After that, we need to find the rate given to us and then use its formula. It’ll lead us to the solution.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
What is Commercial Farming ? What are its types ? Explain them with Examples
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
The allots symbols to the recognized political parties class 10 social science CBSE
Find the mode of the data using an empirical formula class 10 maths CBSE