Answer
Verified
477k+ views
Hint: Find out the total volume of water flowing in 10 minutes with the given speed and then equate it with the final volume of the irrigated field required.
Given, the width and depth of the canal are 6 m and 1.5 m respectively. And the water is flowing in the canal at the speed of 4 km/hr (4000 m/hr).
Length of the water column thus formed in 10 minutes (i.e. $\dfrac{1}{6}$ hour) $ = \dfrac{1}{6} \times 4000 = \dfrac{{2000}}{3}$m.
Volume of water flowing in $\dfrac{1}{6}$ hour $ = $Volume of cuboid of length $\dfrac{{2000}}{3}$m, width 6 m and depth 1.5 m.
Volume of cuboid=lwh
Volume of water flowing in $\dfrac{1}{6}$ hour $ = \dfrac{{2000}}{3} \times 6 \times 1.5 = 6000{m^3}$
Let $x{\text{ }}{{\text{m}}^2}$ is the area irrigated in $\dfrac{1}{6}$ hour, then we have:
$
\Rightarrow x \times \dfrac{8}{{100}} = 6000, \\
\Rightarrow x = 750 \times 100, \\
\Rightarrow x = 75000{\text{ }}{{\text{m}}^2} \\
$
Thus, the area needed is $75000{\text{ }}{{\text{m}}^2}$.
Note: Volume of water is conserved in the above scenario. The volume of water flown from the canal in the given time period is equal to the volume of water standing on the field.
Given, the width and depth of the canal are 6 m and 1.5 m respectively. And the water is flowing in the canal at the speed of 4 km/hr (4000 m/hr).
Length of the water column thus formed in 10 minutes (i.e. $\dfrac{1}{6}$ hour) $ = \dfrac{1}{6} \times 4000 = \dfrac{{2000}}{3}$m.
Volume of water flowing in $\dfrac{1}{6}$ hour $ = $Volume of cuboid of length $\dfrac{{2000}}{3}$m, width 6 m and depth 1.5 m.
Volume of cuboid=lwh
Volume of water flowing in $\dfrac{1}{6}$ hour $ = \dfrac{{2000}}{3} \times 6 \times 1.5 = 6000{m^3}$
Let $x{\text{ }}{{\text{m}}^2}$ is the area irrigated in $\dfrac{1}{6}$ hour, then we have:
$
\Rightarrow x \times \dfrac{8}{{100}} = 6000, \\
\Rightarrow x = 750 \times 100, \\
\Rightarrow x = 75000{\text{ }}{{\text{m}}^2} \\
$
Thus, the area needed is $75000{\text{ }}{{\text{m}}^2}$.
Note: Volume of water is conserved in the above scenario. The volume of water flown from the canal in the given time period is equal to the volume of water standing on the field.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths