Answer

Verified

451.2k+ views

Hint: Find out the total volume of water flowing in 10 minutes with the given speed and then equate it with the final volume of the irrigated field required.

Given, the width and depth of the canal are 6 m and 1.5 m respectively. And the water is flowing in the canal at the speed of 4 km/hr (4000 m/hr).

Length of the water column thus formed in 10 minutes (i.e. $\dfrac{1}{6}$ hour) $ = \dfrac{1}{6} \times 4000 = \dfrac{{2000}}{3}$m.

Volume of water flowing in $\dfrac{1}{6}$ hour $ = $Volume of cuboid of length $\dfrac{{2000}}{3}$m, width 6 m and depth 1.5 m.

Volume of cuboid=lwh

Volume of water flowing in $\dfrac{1}{6}$ hour $ = \dfrac{{2000}}{3} \times 6 \times 1.5 = 6000{m^3}$

Let $x{\text{ }}{{\text{m}}^2}$ is the area irrigated in $\dfrac{1}{6}$ hour, then we have:

$

\Rightarrow x \times \dfrac{8}{{100}} = 6000, \\

\Rightarrow x = 750 \times 100, \\

\Rightarrow x = 75000{\text{ }}{{\text{m}}^2} \\

$

Thus, the area needed is $75000{\text{ }}{{\text{m}}^2}$.

Note: Volume of water is conserved in the above scenario. The volume of water flown from the canal in the given time period is equal to the volume of water standing on the field.

Given, the width and depth of the canal are 6 m and 1.5 m respectively. And the water is flowing in the canal at the speed of 4 km/hr (4000 m/hr).

Length of the water column thus formed in 10 minutes (i.e. $\dfrac{1}{6}$ hour) $ = \dfrac{1}{6} \times 4000 = \dfrac{{2000}}{3}$m.

Volume of water flowing in $\dfrac{1}{6}$ hour $ = $Volume of cuboid of length $\dfrac{{2000}}{3}$m, width 6 m and depth 1.5 m.

Volume of cuboid=lwh

Volume of water flowing in $\dfrac{1}{6}$ hour $ = \dfrac{{2000}}{3} \times 6 \times 1.5 = 6000{m^3}$

Let $x{\text{ }}{{\text{m}}^2}$ is the area irrigated in $\dfrac{1}{6}$ hour, then we have:

$

\Rightarrow x \times \dfrac{8}{{100}} = 6000, \\

\Rightarrow x = 750 \times 100, \\

\Rightarrow x = 75000{\text{ }}{{\text{m}}^2} \\

$

Thus, the area needed is $75000{\text{ }}{{\text{m}}^2}$.

Note: Volume of water is conserved in the above scenario. The volume of water flown from the canal in the given time period is equal to the volume of water standing on the field.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE