What is the volume of a right circular cylinder whose base area is $606c{{m}^{2}}$ and whose height is 2m?
Answer
Verified
468.6k+ views
Hint: We here have been given the base area and height of a cylinder and we need to find its volume. For this, we will need its radius. We will calculate that using the base area which is given by the formula $\text{Base area=}\pi {{r}^{2}}$. Hence, we will get our required radius. Then we will put the value of the calculated radius and given height in the formula for volume given as $V=\pi {{r}^{2}}h$ and hence we will get the required volume.
Complete step by step answer:
Here, we have to find the volume of a cylinder whose base area is $606c{{m}^{2}}$ and height is 2m.
To calculate the volume of a cylinder, we need both its radius and height. Since we know its height, we will calculate its radius first.
Now, we know that base area of a right circular cylinder with radius r is given as:
$\text{Base area=}\pi {{r}^{2}}$
Here, we have the base area as $606c{{m}^{2}}$.
Hence, putting it in the formula for base area, we get the radius as:
$\begin{align}
& \text{Base area=}\pi {{r}^{2}} \\
& \Rightarrow 606=\pi {{r}^{2}} \\
\end{align}$
We know that $\pi =\dfrac{22}{7}$.
Thus, putting this in the formula we get:
$\begin{align}
& 606=\pi {{r}^{2}} \\
& \Rightarrow 606=\dfrac{22}{7}{{r}^{2}} \\
& \Rightarrow {{r}^{2}}=606\times \dfrac{7}{22} \\
& \Rightarrow {{r}^{2}}=\dfrac{4242}{22}=\dfrac{2121}{11}c{{m}^{2}} \\
\end{align}$
Now, we know that the volume ‘V’ of a right circular cylinder is given as:
$V=\pi {{r}^{2}}h$
Where, r=radius of the cylinder
h= height of the cylinder
Now, since we already calculated the value of ${{r}^{2}}$, we can directly put it in this formula along with the height which is already given to us in the question (h=2m).
But we can see that the height is in ‘metres’ but the radius square is in ‘square centimetres’. Thus, we need to change them into their SI unit which is metre.
Now, we know that:
$1c{{m}^{2}}={{10}^{-4}}{{m}^{2}}$
Thus, we get the radius square as:
$\begin{align}
& {{r}^{2}}=\dfrac{2121}{11}c{{m}^{2}} \\
& \Rightarrow {{r}^{2}}=\dfrac{2121}{11}\times {{10}^{-4}}{{m}^{2}} \\
\end{align}$
Now, putting these values in the formula for volume, we get:
$\begin{align}
& V=\pi {{r}^{2}}h \\
& \Rightarrow V=\dfrac{22}{7}\times \dfrac{2121}{11}\times {{10}^{-4}}\times 2 \\
& \Rightarrow V=1212\times {{10}^{-4}} \\
& \therefore V=0.1212{{m}^{3}} \\
\end{align}$
Hence, the volume of the required cylinder is $0.1212{{m}^{3}}$.
Note: We here didn’t calculate the value of r but we left it as ${{r}^{2}}$ instead because in the formula for the volume, the term ${{r}^{2}}$ exists and calculating r and then ${{r}^{2}}$ again would only be long and stupid.
There is also a shorter and more direct way to find the volume which is explained as follows:
The volume is given as:
$V=\pi {{r}^{2}}h$ .....(i)
Now, the base area is given as:
$\text{Base area=}\pi {{r}^{2}}$
The base area is given to us $606c{{m}^{2}}=606\times {{10}^{-4}}{{m}^{2}}$ . Hence, putting its value we get:
$606\times {{10}^{-4}}=\pi {{r}^{2}}$ .....(ii)
Now, dividing equation (i) by equation (ii), we get:
$\begin{align}
& \dfrac{V}{606\times {{10}^{-4}}}=\dfrac{\pi {{r}^{2}}h}{\pi {{r}^{2}}} \\
& \Rightarrow \dfrac{V}{606\times {{10}^{-4}}}=h \\
& \Rightarrow V=2\times 606\times {{10}^{-4}} \\
& \therefore V=0.1212{{m}^{3}} \\
\end{align}$
Complete step by step answer:
Here, we have to find the volume of a cylinder whose base area is $606c{{m}^{2}}$ and height is 2m.
To calculate the volume of a cylinder, we need both its radius and height. Since we know its height, we will calculate its radius first.
Now, we know that base area of a right circular cylinder with radius r is given as:
$\text{Base area=}\pi {{r}^{2}}$
Here, we have the base area as $606c{{m}^{2}}$.
Hence, putting it in the formula for base area, we get the radius as:
$\begin{align}
& \text{Base area=}\pi {{r}^{2}} \\
& \Rightarrow 606=\pi {{r}^{2}} \\
\end{align}$
We know that $\pi =\dfrac{22}{7}$.
Thus, putting this in the formula we get:
$\begin{align}
& 606=\pi {{r}^{2}} \\
& \Rightarrow 606=\dfrac{22}{7}{{r}^{2}} \\
& \Rightarrow {{r}^{2}}=606\times \dfrac{7}{22} \\
& \Rightarrow {{r}^{2}}=\dfrac{4242}{22}=\dfrac{2121}{11}c{{m}^{2}} \\
\end{align}$
Now, we know that the volume ‘V’ of a right circular cylinder is given as:
$V=\pi {{r}^{2}}h$
Where, r=radius of the cylinder
h= height of the cylinder
Now, since we already calculated the value of ${{r}^{2}}$, we can directly put it in this formula along with the height which is already given to us in the question (h=2m).
But we can see that the height is in ‘metres’ but the radius square is in ‘square centimetres’. Thus, we need to change them into their SI unit which is metre.
Now, we know that:
$1c{{m}^{2}}={{10}^{-4}}{{m}^{2}}$
Thus, we get the radius square as:
$\begin{align}
& {{r}^{2}}=\dfrac{2121}{11}c{{m}^{2}} \\
& \Rightarrow {{r}^{2}}=\dfrac{2121}{11}\times {{10}^{-4}}{{m}^{2}} \\
\end{align}$
Now, putting these values in the formula for volume, we get:
$\begin{align}
& V=\pi {{r}^{2}}h \\
& \Rightarrow V=\dfrac{22}{7}\times \dfrac{2121}{11}\times {{10}^{-4}}\times 2 \\
& \Rightarrow V=1212\times {{10}^{-4}} \\
& \therefore V=0.1212{{m}^{3}} \\
\end{align}$
Hence, the volume of the required cylinder is $0.1212{{m}^{3}}$.
Note: We here didn’t calculate the value of r but we left it as ${{r}^{2}}$ instead because in the formula for the volume, the term ${{r}^{2}}$ exists and calculating r and then ${{r}^{2}}$ again would only be long and stupid.
There is also a shorter and more direct way to find the volume which is explained as follows:
The volume is given as:
$V=\pi {{r}^{2}}h$ .....(i)
Now, the base area is given as:
$\text{Base area=}\pi {{r}^{2}}$
The base area is given to us $606c{{m}^{2}}=606\times {{10}^{-4}}{{m}^{2}}$ . Hence, putting its value we get:
$606\times {{10}^{-4}}=\pi {{r}^{2}}$ .....(ii)
Now, dividing equation (i) by equation (ii), we get:
$\begin{align}
& \dfrac{V}{606\times {{10}^{-4}}}=\dfrac{\pi {{r}^{2}}h}{\pi {{r}^{2}}} \\
& \Rightarrow \dfrac{V}{606\times {{10}^{-4}}}=h \\
& \Rightarrow V=2\times 606\times {{10}^{-4}} \\
& \therefore V=0.1212{{m}^{3}} \\
\end{align}$
Recently Updated Pages
If the perimeter of the equilateral triangle is 18-class-10-maths-CBSE
How do you make the plural form of most of the words class 10 english CBSE
Quotes and Slogans on Consumer Rights Can Anybody Give Me
What is the orbit of a satellite Find out the basis class 10 physics CBSE
the period from 1919 to 1947 forms an important phase class 10 social science CBSE
If the average marks of three batches of 55 60 and class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE