Volume of a hollow sphere is $\dfrac{{11352}}{7}{\text{ c}}{{\text{m}}^3}$ . If the outer radius is 8cm, find the inner radius of the sphere. (Take $\pi = \dfrac{{22}}{7}$ )
Answer
380.7k+ views
Hint- If the hollow sphere has its outer radius as R and inner radius as small r then volume of the sphere is given as $V = \dfrac{4}{3}\pi ({R^3} - {r^3})$ . Using this formula we will find our solution.
Let $R$ and $r$ be the outer and inner radii of the hollow sphere respectively.
Let $V$ be the volume of the hollow sphere.
Complete step-by-step answer:
Given that volume of the sphere is
$V = \dfrac{{11352}}{7}{\text{ c}}{{\text{m}}^3}$
And outer radius is
$R = 8cm$
Now substituting these values in the formula of volume of sphere, we obtain
$
\Rightarrow V = \dfrac{4}{3}\pi ({R^3} - {r^3}) \\
\Rightarrow \dfrac{{11352}}{7} = \dfrac{4}{3} \times \dfrac{{22}}{7}({8^3} - {r^3}) \\
$
On simplifying above equation for the value of $r$ , we obtain
\[
\Rightarrow \dfrac{{11352 \times 3}}{{22 \times 4}} = {8^3} - {r^3} \\
\Rightarrow 387 = 512 - {r^3} \\
\Rightarrow {r^3} = 512 - 387 \\
\Rightarrow {r^3} = 125 \\
\Rightarrow r = 5cm \\
\]
Hence, the inner radius of the hollow sphere is, \[r = 5cm\]
Note- To solve these types of questions formulas of volumes of shapes must be remembered. Here we have to calculate the volume of a hollow sphere and both the radii are given. We have calculated the volume of the hollow part with a small radius and volume of the whole sphere; then we subtracted the volume of the hollow sphere from the volume of the whole sphere. In this question we have the formula but the question can be solved using this approach also.
Let $R$ and $r$ be the outer and inner radii of the hollow sphere respectively.
Let $V$ be the volume of the hollow sphere.
Complete step-by-step answer:

Given that volume of the sphere is
$V = \dfrac{{11352}}{7}{\text{ c}}{{\text{m}}^3}$
And outer radius is
$R = 8cm$
Now substituting these values in the formula of volume of sphere, we obtain
$
\Rightarrow V = \dfrac{4}{3}\pi ({R^3} - {r^3}) \\
\Rightarrow \dfrac{{11352}}{7} = \dfrac{4}{3} \times \dfrac{{22}}{7}({8^3} - {r^3}) \\
$
On simplifying above equation for the value of $r$ , we obtain
\[
\Rightarrow \dfrac{{11352 \times 3}}{{22 \times 4}} = {8^3} - {r^3} \\
\Rightarrow 387 = 512 - {r^3} \\
\Rightarrow {r^3} = 512 - 387 \\
\Rightarrow {r^3} = 125 \\
\Rightarrow r = 5cm \\
\]
Hence, the inner radius of the hollow sphere is, \[r = 5cm\]
Note- To solve these types of questions formulas of volumes of shapes must be remembered. Here we have to calculate the volume of a hollow sphere and both the radii are given. We have calculated the volume of the hollow part with a small radius and volume of the whole sphere; then we subtracted the volume of the hollow sphere from the volume of the whole sphere. In this question we have the formula but the question can be solved using this approach also.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Scroll valve is present in a Respiratory system of class 11 biology CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

is known as the Land of the Rising Sun A Japan B Norway class 8 social science CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
