Vapour density of a volatile substance is 4 in comparison to methane \[\left( {{\text{C}}{{\text{H}}_4} = 1} \right)\]. Its molecular mass will be:
A) 8
B) 2
C) 64
D) 128

VerifiedVerified
118.8k+ views
Hint: The relationship between the molecular mass and the vapour density is \[{\text{molecular mass = }}2 \times {\text{vapour density}}\].

Complete step by step answer:
The relationship between the molecular mass and the vapour density for two substances is

\[\dfrac{{{\text{molecular mass of volatile substance}}}}{{{\text{molecular mass of methane}}}}{\text{ = }}\dfrac{{{\text{vapour density of volatile substance}}}}{{{\text{vapour density of methane}}}}\].

 Rearrange above expression:

\[{\text{ }}\begin{array}{*{20}{c}}
  {{\text{molecular mass of}}} \\
  {{\text{volatile substance}}}
\end{array}{\text{ = }}\dfrac{{{\text{vapour density of volatile substance}}}}{{{\text{vapour density of methane}}}} \times {\text{ }}\begin{array}{*{20}{c}}
  {{\text{molecular mass}}} \\
  {{\text{of methane}}}
\end{array}\]... ...(1)

The ratio of the vapour density of a volatile substance to that of methane is 4. The molecular mass of methane is 12+4(1)=16. Substitute values in equation (1).

\[ {\text{molecular mass of volatile substance = }}\dfrac{{{\text{vapour density of volatile substance}}}}{{{\text{vapour density of methane}}}} \\
  {\text{ }} \times {\text{ molecular mass of methane}} \\
  {\text{molecular mass of volatile substance = }}\dfrac{4}{1} \times {\text{ 16}} \\
  {\text{molecular mass of volatile substance = 64}} \\
 \]
The molecular mass of volatile substances will be 64.

The correct answer is option C.

Note:
Write a correct relationship between the molecular mass and the vapour density. Avoid calculation errors. Vapour density is the density of a gas relative to that of hydrogen under identical conditions of temperature and pressure.