Answer
Verified
463.8k+ views
Hint: We start solving the problem by assigning a function to the given expansion. We use the fact that we get the constant term by substituting ‘0’ in place of ‘x’ in the expansion. So, we substitute ‘0’ in place of ‘x’ to get the required value of the constant term.
Complete step-by-step solution:
Given that we have an expansion $23{{x}^{3}}+12{{x}^{2}}-6x-12$, and we need to find the value of the constant term in that given expansion.
Let us represent the given expansion with f(x). So, we have $f(x)=23{{x}^{3}}+12{{x}^{2}}-6x-12$ ---(1).
We can see that the given expansion is polynomial of degree 3 (we know that degree is the maximum power of x in a given polynomial of x). We know that to find the value of the constant term in expansion, we substitute x = 0 in the expansion.
So, let us substitute x = 0 in the polynomial f(x).
So, we have got $f\left( 0 \right)=23{{\left( 0 \right)}^{3}}+12{{\left( 0 \right)}^{2}}-6\left( 0 \right)-12$.
We have got $f\left( 0 \right)=23\left( 0 \right)+12\left( 0 \right)-6\left( 0 \right)-12$.
We have got f(0) = $0 + 0 – 0 – 12$.
We have got f(0) = $–12$.
So, we have got the value of f(0) as $–12$.
Since f(0) is the value of the constant term of the expansion, We get the value of the constant term of the expansion as $–12$.
$\therefore$ The value of the constant term in the expansion $23{{x}^{3}}+12{{x}^{2}}-6x-12$ is –12.
Note: We solved this problem by substituting ‘0’ in place of ‘x’, this method can also be adopted in the cases where ‘x’ contains powers in the fractions. Similarly, we can expect problems to tell the value of co-efficient of ‘x’ and other higher powers of ‘x’.
Complete step-by-step solution:
Given that we have an expansion $23{{x}^{3}}+12{{x}^{2}}-6x-12$, and we need to find the value of the constant term in that given expansion.
Let us represent the given expansion with f(x). So, we have $f(x)=23{{x}^{3}}+12{{x}^{2}}-6x-12$ ---(1).
We can see that the given expansion is polynomial of degree 3 (we know that degree is the maximum power of x in a given polynomial of x). We know that to find the value of the constant term in expansion, we substitute x = 0 in the expansion.
So, let us substitute x = 0 in the polynomial f(x).
So, we have got $f\left( 0 \right)=23{{\left( 0 \right)}^{3}}+12{{\left( 0 \right)}^{2}}-6\left( 0 \right)-12$.
We have got $f\left( 0 \right)=23\left( 0 \right)+12\left( 0 \right)-6\left( 0 \right)-12$.
We have got f(0) = $0 + 0 – 0 – 12$.
We have got f(0) = $–12$.
So, we have got the value of f(0) as $–12$.
Since f(0) is the value of the constant term of the expansion, We get the value of the constant term of the expansion as $–12$.
$\therefore$ The value of the constant term in the expansion $23{{x}^{3}}+12{{x}^{2}}-6x-12$ is –12.
Note: We solved this problem by substituting ‘0’ in place of ‘x’, this method can also be adopted in the cases where ‘x’ contains powers in the fractions. Similarly, we can expect problems to tell the value of co-efficient of ‘x’ and other higher powers of ‘x’.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE