Answer

Verified

345.3k+ views

**Hint:**In order to show that \[g\left( x \right)=x+3\] is a factor of \[p\left( x \right)\]\[=69+11x-{{x}^{2}}+{{x}^{3}}\], we must solve for \[g\left( x \right)\] at first. Then we are supposed to substitute this value of \[g\left( x \right)\] in \[p\left( x \right)\] and solve the polynomial. If the value of \[p\left( x \right)\] would be zero, then the given \[g\left( x \right)\] will be a factor of \[p\left( x \right)\].

**Complete step-by-step solution:**

Now let us learn about the factor theorem. The factor theorem is a theorem that links the factors and zeros of a polynomial. This is a special case of the remainder theorem. According to this theorem we say that \[x-a\] is a factor of \[f\left( x \right)\], if \[f\left( a \right)=0\]. This theorem is commonly used to find the roots of the polynomial. We can also find the factor of a polynomial by other methods such as the polynomial long division method and the synthetic division method.

Now let us find if \[g\left( x \right)=x+3\] is a factor of \[p\left( x \right)\]\[=69+11x-{{x}^{2}}+{{x}^{3}}\].

Firstly, we must be solving for \[g\left( x \right)=x+3\].

We get,

\[\begin{align}

& g\left( x \right)=x+3 \\

& \Rightarrow x+3=0 \\

& \Rightarrow x=-3 \\

\end{align}\]

We obtain the value of \[x\] as \[-3\].

Now we will be substituting this obtained value in \[p\left( x \right)\]\[=69+11x-{{x}^{2}}+{{x}^{3}}\].

\[\begin{align}

& \Rightarrow p\left( x \right)=69+11x-{{x}^{2}}+{{x}^{3}} \\

& \Rightarrow p\left( -3 \right)=69+11\left( -3 \right)-{{\left( -3 \right)}^{2}}+{{\left( -3 \right)}^{3}} \\

& \Rightarrow p\left( -3 \right)=69-33-9-27 \\

& \Rightarrow p\left( -3 \right)=0 \\

\end{align}\]

We see that we have obtained \[p\left( x \right)=0\].

**\[\therefore \] We can conclude that given \[g\left( x \right)=x+3\] is a factor of \[p\left( x \right)\]\[=69+11x-{{x}^{2}}+{{x}^{3}}\].**

**Note:**To apply the factor theorem, we must always have a note that for a polynomial \[f\left( x \right)\] the degree of the polynomial should be greater than or equal to one. The degree of the polynomial is nothing but the highest power of the term in the expression. The value which solves the expression or equation is known as polynomial value.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE