Answer
Verified
492k+ views
Hint: The differentiation of \[x\] is represented by \[dx\] is defined by \[dx = x\] where \[x\] is the minor change in \[x\]. The differential of \[y\] is represented by \[dy\] is defined by \[dy = \dfrac{{dy}}{{dx}}x\]. As \[x\] is very small compared to \[x\], so \[dy\] is the approximation of \[y\]. Hence the increment in \[y\] corresponding to the increment in \[x\], denoted by \[\Delta y\], is given by \[\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)\].
Complete step-by-step answer:
Let \[y = \sqrt x \] where \[x = 49\& \Delta x = 0.5\]
Since \[y = \sqrt x \]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left( {\sqrt x } \right)}}{{dx}} = \dfrac{1}{{2\sqrt x }}\]
Now,
\[
\Delta y = \dfrac{{dy}}{{dx}}\Delta x \\
\Rightarrow \Delta y = \dfrac{1}{{2\sqrt x }}\left( {0.5} \right) \\
\Rightarrow \Delta y = \dfrac{1}{{2\sqrt {49} }} \times 0.5 \\
\Rightarrow \Delta y = \dfrac{1}{{2 \times 7}} \times 0.5 \\
\Rightarrow \Delta y = \dfrac{1}{{14}} \times 0.5 \\
\Rightarrow \Delta y = \dfrac{{0.5}}{{14}} \\
\therefore \Delta y = 0.036 \\
\]
Also,
\[\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)\]
By substituting the above values, we have
\[
\Delta y = \sqrt {x + \Delta x} - \sqrt x {\text{ }}\left[ {\because f\left( x \right) = y = \sqrt x } \right]{\text{ }} \\
0.036 = \sqrt {49 + 0.5} - \sqrt {49} \\
{\text{0}}{\text{.036}} = \sqrt {49.5} - 7 \\
\sqrt {49.5} = 0.036 + 7 \\
\therefore \sqrt {49.5} = 7.036{\text{ }} \\
\]
Thus, the approximate value of \[\sqrt {49.5} \] is 7.036
Note: In this problem we have solved the approximation up to 3 places of decimals. And also, we have rounded off the decimal numbers up to three places. We use differentiation to find the approximate values of the certain quantities.
Complete step-by-step answer:
Let \[y = \sqrt x \] where \[x = 49\& \Delta x = 0.5\]
Since \[y = \sqrt x \]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left( {\sqrt x } \right)}}{{dx}} = \dfrac{1}{{2\sqrt x }}\]
Now,
\[
\Delta y = \dfrac{{dy}}{{dx}}\Delta x \\
\Rightarrow \Delta y = \dfrac{1}{{2\sqrt x }}\left( {0.5} \right) \\
\Rightarrow \Delta y = \dfrac{1}{{2\sqrt {49} }} \times 0.5 \\
\Rightarrow \Delta y = \dfrac{1}{{2 \times 7}} \times 0.5 \\
\Rightarrow \Delta y = \dfrac{1}{{14}} \times 0.5 \\
\Rightarrow \Delta y = \dfrac{{0.5}}{{14}} \\
\therefore \Delta y = 0.036 \\
\]
Also,
\[\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)\]
By substituting the above values, we have
\[
\Delta y = \sqrt {x + \Delta x} - \sqrt x {\text{ }}\left[ {\because f\left( x \right) = y = \sqrt x } \right]{\text{ }} \\
0.036 = \sqrt {49 + 0.5} - \sqrt {49} \\
{\text{0}}{\text{.036}} = \sqrt {49.5} - 7 \\
\sqrt {49.5} = 0.036 + 7 \\
\therefore \sqrt {49.5} = 7.036{\text{ }} \\
\]
Thus, the approximate value of \[\sqrt {49.5} \] is 7.036
Note: In this problem we have solved the approximation up to 3 places of decimals. And also, we have rounded off the decimal numbers up to three places. We use differentiation to find the approximate values of the certain quantities.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE