Answer

Verified

346.2k+ views

**Hint:**In order to find if \[2q-1\] is a factor \[4{{q}^{3}}-6{{q}^{2}}-4q+3\] using long division method, we must perform division process by considering the dividend as \[4{{q}^{3}}-6{{q}^{2}}-4q+3\] and the divisor as \[2q-1\]. After performing the division, if we obtain the remainder as zero, then we can conclude that the second polynomial is the factor of the first polynomial.

**Complete step-by-step solution:**

Now let us learn about the process of long division upon the polynomials.

1.We have to divide the first term of numerator by the first term of denominator i.e. divisor and the obtained answer should be placed in the place of quotient.

2.Now we should multiply the next term of the divisor with the first term written in the quotient and write the obtained answer in the second term’s place of the dividend.

3.Next, we have to subtract the polynomials and write the difference between them.

4. We have to follow the same process again and again until we obtain the remainder zero or the polynomial such that the degree of the divisor is greater than the degree of the remainder.

Now let us perform the long division upon the given polynomials.

\[\begin{align}

& \text{2q-1}\overset{\text{2}{{\text{q}}^{\text{2}}}\text{- 2q-

3}}{\overline{\left){\text{4}{{\text{q}}^{\text{3}}}\text{-6}{{\text{q}}^{\text{2}}}\text{-4q+3}}\right.}}

\\

& \,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -4}{{\text{q}}^{\text{3}}}\text{-2}{{\text{q}}^{\text{2}}} \downarrow} \\

& \,\,\,\,\,\,\,\,\,\,\,\,\text{ -4}{{\text{q}}^{\text{2}}}\text{- 4q} \\

& \,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -4}{{\text{q}}^{\text{2}}}\text{+2q}\downarrow} \\

& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ -6q+3} \\

& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -6q+3}} \\

& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \\

\end{align}\]

**We can see that we have obtained the remainder as\[0\], so we can conclude that \[2q-1\] is a factor of \[4{{q}^{3}}-6{{q}^{2}}-4q+3\].**

**Note:**We can check that if we have obtained the answer correctly or not by using the Euclid division algorithm i.e. \[\text{a=bq+r}\].

From the question, we have

\[\begin{align}

& \text{a=}4{{q}^{3}}-6{{q}^{2}}-4q+3 \\

& b=2q-1 \\

& q=\text{2}{{\text{q}}^{\text{2}}}\text{- 2q-3} \\

& r=0 \\

\end{align}\]

Upon substituting these values, let us check if we obtain the same polynomials on both the sides.

\[\begin{align}

& \Rightarrow \text{a=bq+r} \\

& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=\left( 2q-1 \right)\left( \text{2}{{\text{q}}^{\text{2}}}\text{- 2q-3} \right)+0 \\

& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=4{{q}^{3}}-4{{q}^{2}}-6q-2{{q}^{2}}+2q+3 \\

& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=4{{q}^{3}}-6{{q}^{2}}-4q+3 \\

\end{align}\]

We can see that we have obtained the same polynomials on both sides of the equation.

Hence proved.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

The 3 + 3 times 3 3 + 3 What is the right answer and class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE