
Using a long division method check whether the second polynomial is the factor of the first polynomial.
\[4{{q}^{3}}-6{{q}^{2}}-4q+3;2q-1\]
Answer
501.3k+ views
Hint: In order to find if \[2q-1\] is a factor \[4{{q}^{3}}-6{{q}^{2}}-4q+3\] using long division method, we must perform division process by considering the dividend as \[4{{q}^{3}}-6{{q}^{2}}-4q+3\] and the divisor as \[2q-1\]. After performing the division, if we obtain the remainder as zero, then we can conclude that the second polynomial is the factor of the first polynomial.
Complete step-by-step solution:
Now let us learn about the process of long division upon the polynomials.
1.We have to divide the first term of numerator by the first term of denominator i.e. divisor and the obtained answer should be placed in the place of quotient.
2.Now we should multiply the next term of the divisor with the first term written in the quotient and write the obtained answer in the second term’s place of the dividend.
3.Next, we have to subtract the polynomials and write the difference between them.
4. We have to follow the same process again and again until we obtain the remainder zero or the polynomial such that the degree of the divisor is greater than the degree of the remainder.
Now let us perform the long division upon the given polynomials.
\[\begin{align}
& \text{2q-1}\overset{\text{2}{{\text{q}}^{\text{2}}}\text{- 2q-
3}}{\overline{\left){\text{4}{{\text{q}}^{\text{3}}}\text{-6}{{\text{q}}^{\text{2}}}\text{-4q+3}}\right.}}
\\
& \,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -4}{{\text{q}}^{\text{3}}}\text{-2}{{\text{q}}^{\text{2}}} \downarrow} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\text{ -4}{{\text{q}}^{\text{2}}}\text{- 4q} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -4}{{\text{q}}^{\text{2}}}\text{+2q}\downarrow} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ -6q+3} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -6q+3}} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \\
\end{align}\]
We can see that we have obtained the remainder as\[0\], so we can conclude that \[2q-1\] is a factor of \[4{{q}^{3}}-6{{q}^{2}}-4q+3\].
Note: We can check that if we have obtained the answer correctly or not by using the Euclid division algorithm i.e. \[\text{a=bq+r}\].
From the question, we have
\[\begin{align}
& \text{a=}4{{q}^{3}}-6{{q}^{2}}-4q+3 \\
& b=2q-1 \\
& q=\text{2}{{\text{q}}^{\text{2}}}\text{- 2q-3} \\
& r=0 \\
\end{align}\]
Upon substituting these values, let us check if we obtain the same polynomials on both the sides.
\[\begin{align}
& \Rightarrow \text{a=bq+r} \\
& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=\left( 2q-1 \right)\left( \text{2}{{\text{q}}^{\text{2}}}\text{- 2q-3} \right)+0 \\
& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=4{{q}^{3}}-4{{q}^{2}}-6q-2{{q}^{2}}+2q+3 \\
& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=4{{q}^{3}}-6{{q}^{2}}-4q+3 \\
\end{align}\]
We can see that we have obtained the same polynomials on both sides of the equation.
Hence proved.
Complete step-by-step solution:
Now let us learn about the process of long division upon the polynomials.
1.We have to divide the first term of numerator by the first term of denominator i.e. divisor and the obtained answer should be placed in the place of quotient.
2.Now we should multiply the next term of the divisor with the first term written in the quotient and write the obtained answer in the second term’s place of the dividend.
3.Next, we have to subtract the polynomials and write the difference between them.
4. We have to follow the same process again and again until we obtain the remainder zero or the polynomial such that the degree of the divisor is greater than the degree of the remainder.
Now let us perform the long division upon the given polynomials.
\[\begin{align}
& \text{2q-1}\overset{\text{2}{{\text{q}}^{\text{2}}}\text{- 2q-
3}}{\overline{\left){\text{4}{{\text{q}}^{\text{3}}}\text{-6}{{\text{q}}^{\text{2}}}\text{-4q+3}}\right.}}
\\
& \,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -4}{{\text{q}}^{\text{3}}}\text{-2}{{\text{q}}^{\text{2}}} \downarrow} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\text{ -4}{{\text{q}}^{\text{2}}}\text{- 4q} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -4}{{\text{q}}^{\text{2}}}\text{+2q}\downarrow} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ -6q+3} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -6q+3}} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \\
\end{align}\]
We can see that we have obtained the remainder as\[0\], so we can conclude that \[2q-1\] is a factor of \[4{{q}^{3}}-6{{q}^{2}}-4q+3\].
Note: We can check that if we have obtained the answer correctly or not by using the Euclid division algorithm i.e. \[\text{a=bq+r}\].
From the question, we have
\[\begin{align}
& \text{a=}4{{q}^{3}}-6{{q}^{2}}-4q+3 \\
& b=2q-1 \\
& q=\text{2}{{\text{q}}^{\text{2}}}\text{- 2q-3} \\
& r=0 \\
\end{align}\]
Upon substituting these values, let us check if we obtain the same polynomials on both the sides.
\[\begin{align}
& \Rightarrow \text{a=bq+r} \\
& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=\left( 2q-1 \right)\left( \text{2}{{\text{q}}^{\text{2}}}\text{- 2q-3} \right)+0 \\
& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=4{{q}^{3}}-4{{q}^{2}}-6q-2{{q}^{2}}+2q+3 \\
& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=4{{q}^{3}}-6{{q}^{2}}-4q+3 \\
\end{align}\]
We can see that we have obtained the same polynomials on both sides of the equation.
Hence proved.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

