Answer

Verified

380.1k+ views

**Hint:**In order to find if \[2q-1\] is a factor \[4{{q}^{3}}-6{{q}^{2}}-4q+3\] using long division method, we must perform division process by considering the dividend as \[4{{q}^{3}}-6{{q}^{2}}-4q+3\] and the divisor as \[2q-1\]. After performing the division, if we obtain the remainder as zero, then we can conclude that the second polynomial is the factor of the first polynomial.

**Complete step-by-step solution:**

Now let us learn about the process of long division upon the polynomials.

1.We have to divide the first term of numerator by the first term of denominator i.e. divisor and the obtained answer should be placed in the place of quotient.

2.Now we should multiply the next term of the divisor with the first term written in the quotient and write the obtained answer in the second term’s place of the dividend.

3.Next, we have to subtract the polynomials and write the difference between them.

4. We have to follow the same process again and again until we obtain the remainder zero or the polynomial such that the degree of the divisor is greater than the degree of the remainder.

Now let us perform the long division upon the given polynomials.

\[\begin{align}

& \text{2q-1}\overset{\text{2}{{\text{q}}^{\text{2}}}\text{- 2q-

3}}{\overline{\left){\text{4}{{\text{q}}^{\text{3}}}\text{-6}{{\text{q}}^{\text{2}}}\text{-4q+3}}\right.}}

\\

& \,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -4}{{\text{q}}^{\text{3}}}\text{-2}{{\text{q}}^{\text{2}}} \downarrow} \\

& \,\,\,\,\,\,\,\,\,\,\,\,\text{ -4}{{\text{q}}^{\text{2}}}\text{- 4q} \\

& \,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -4}{{\text{q}}^{\text{2}}}\text{+2q}\downarrow} \\

& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ -6q+3} \\

& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\underline{\text{ -6q+3}} \\

& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \\

\end{align}\]

**We can see that we have obtained the remainder as\[0\], so we can conclude that \[2q-1\] is a factor of \[4{{q}^{3}}-6{{q}^{2}}-4q+3\].**

**Note:**We can check that if we have obtained the answer correctly or not by using the Euclid division algorithm i.e. \[\text{a=bq+r}\].

From the question, we have

\[\begin{align}

& \text{a=}4{{q}^{3}}-6{{q}^{2}}-4q+3 \\

& b=2q-1 \\

& q=\text{2}{{\text{q}}^{\text{2}}}\text{- 2q-3} \\

& r=0 \\

\end{align}\]

Upon substituting these values, let us check if we obtain the same polynomials on both the sides.

\[\begin{align}

& \Rightarrow \text{a=bq+r} \\

& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=\left( 2q-1 \right)\left( \text{2}{{\text{q}}^{\text{2}}}\text{- 2q-3} \right)+0 \\

& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=4{{q}^{3}}-4{{q}^{2}}-6q-2{{q}^{2}}+2q+3 \\

& \Rightarrow \left( 4{{q}^{3}}-6{{q}^{2}}-4q+3 \right)=4{{q}^{3}}-6{{q}^{2}}-4q+3 \\

\end{align}\]

We can see that we have obtained the same polynomials on both sides of the equation.

Hence proved.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Give 10 examples for herbs , shrubs , climbers , creepers