Questions & Answers

Question

Answers

Answer

Verified

65k+ views

We have given that numbers $ 1651 $ and $ 2032 $ .

We have to find the HCF by using Euclid’s algorithm.

Now, we compare both numbers, we get

$ 2032>1651 $

Let us assume $ 1651=b $ and $ 2032=a $ .

Now, expressing the numbers in the form $ a=bq+r $ , we get

$ 2032=\left( 1651\times 1 \right)+381 $

As $ 381\ne 0 $, we repeat the same process with $ 1651 $ and $ 381 $.

Now, assume $ 1651=a $ and $ 381=b $.

Now, expressing the numbers in the form $ a=bq+r $ , we get

$ 1651=\left( 381\times 4 \right)+127 $

As $ 127\ne 0 $ , we repeat the same process with $ 381 $ and $ 127 $ .

Now, assume $ 381=a $ and $ 127=b $ .

Now, expressing the numbers in the form $ a=bq+r $ , we get

$ 381=\left( 127\times 3 \right)+0 $

Since the remainder is zero, we can not proceed further.

The HCF of $ 1651 $ and $ 2032 $ is $ 127 $.

$ \text{Dividend=}\left( \text{Divisor}\times \text{Quotient} \right)+r\text{emainder} $