Use a suitable identity, to solve $\left( 1.1m-0.4 \right)\left( 1.1m+0.4 \right)$.
Last updated date: 18th Mar 2023
•
Total views: 304.2k
•
Views today: 4.83k
Answer
304.2k+ views
Hint: First of all let 1.1 m = a and 0.4 = b. Now to get the value of $\left( 1.1m-0.4 \right)\left( 1.1m+0.4 \right)$, use the identity $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$. Put ${{a}^{2}}={{\left( 1.1m \right)}^{2}}\ and\ {{b}^{2}}={{\left( 0.4 \right)}^{2}}$
Complete step-by-step answer:
Here we have to solve $\left( 1.1m-0.4 \right)\left( 1.1m+0.4 \right)$
First of all let us assume the given expression to be,
\[E=\left( 1.1m-0.4 \right)\left( 1.1m+0.4 \right)\]
Let us take 1.1 m to be ‘a’.
Also, let us take 0.4 to be ‘b’.
By putting the assumed values of 1.1 m and 0.4, we get,
E = (a –b) (a + b)
By solving above expression, we get,
E = a (a +b) – b (a + b)
By further solving the above expression, we get,
$E={{a}^{2}}+ab-ba-{{b}^{2}}$
As we know that ab = ba, therefore by applying this in above expression, we get,
$E={{a}^{2}}+ab-ab-{{b}^{2}}$
We know that x – x = 0. By using this in above expression we get,
\[E={{a}^{2}}-{{b}^{2}}\]
Hence we get, \[E=\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\]
Therefore, we have got an identity that is
$\left( a+b \right)\left( a-b \right)=\left( {{a}^{2}}-{{b}^{2}} \right)$
As we have assumed that a = 1.1 m and b = 0.4,
By putting values in above identity, we get,
$\left( 0.1m+0.4 \right)\left( 0.1m-0.4 \right)={{\left( 0.1m \right)}^{2}}-{{\left( 0.4 \right)}^{2}}$
As we know that ${{\left( a.b \right)}^{n}}={{a}^{n}}.{{b}^{n}}$. By applying this in RHS of above equation, we get,
$\begin{align}
& \left( 0.1m+0.4 \right)\left( 0.1m-0.4 \right)={{\left( 0.1m \right)}^{2}}-{{\left( 0.4 \right)}^{2}} \\
& =\left( 0.01 \right){{m}^{2}}-\left( 0.16 \right) \\
\end{align}$
Hence, we get $\left( 0.1m+0.4 \right)\left( 0.1m-0.4 \right)=\left( 0.01{{m}^{2}} \right)-\left( 0.16 \right)$
By using the suitable identity that is $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
Note: Students must remember this identity because this identity is very useful in mathematics. Also students should take special care while multiplying, squaring etc. terms which contain decimal.
For example, students often make this mistake of writing ${{\left( 0.4 \right)}^{2}}=1.6$ which is wrong. Actually${{\left( 0.4 \right)}^{2}}=\left( 0.16 \right)$. So this mistake must be avoided.
Complete step-by-step answer:
Here we have to solve $\left( 1.1m-0.4 \right)\left( 1.1m+0.4 \right)$
First of all let us assume the given expression to be,
\[E=\left( 1.1m-0.4 \right)\left( 1.1m+0.4 \right)\]
Let us take 1.1 m to be ‘a’.
Also, let us take 0.4 to be ‘b’.
By putting the assumed values of 1.1 m and 0.4, we get,
E = (a –b) (a + b)
By solving above expression, we get,
E = a (a +b) – b (a + b)
By further solving the above expression, we get,
$E={{a}^{2}}+ab-ba-{{b}^{2}}$
As we know that ab = ba, therefore by applying this in above expression, we get,
$E={{a}^{2}}+ab-ab-{{b}^{2}}$
We know that x – x = 0. By using this in above expression we get,
\[E={{a}^{2}}-{{b}^{2}}\]
Hence we get, \[E=\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\]
Therefore, we have got an identity that is
$\left( a+b \right)\left( a-b \right)=\left( {{a}^{2}}-{{b}^{2}} \right)$
As we have assumed that a = 1.1 m and b = 0.4,
By putting values in above identity, we get,
$\left( 0.1m+0.4 \right)\left( 0.1m-0.4 \right)={{\left( 0.1m \right)}^{2}}-{{\left( 0.4 \right)}^{2}}$
As we know that ${{\left( a.b \right)}^{n}}={{a}^{n}}.{{b}^{n}}$. By applying this in RHS of above equation, we get,
$\begin{align}
& \left( 0.1m+0.4 \right)\left( 0.1m-0.4 \right)={{\left( 0.1m \right)}^{2}}-{{\left( 0.4 \right)}^{2}} \\
& =\left( 0.01 \right){{m}^{2}}-\left( 0.16 \right) \\
\end{align}$
Hence, we get $\left( 0.1m+0.4 \right)\left( 0.1m-0.4 \right)=\left( 0.01{{m}^{2}} \right)-\left( 0.16 \right)$
By using the suitable identity that is $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
Note: Students must remember this identity because this identity is very useful in mathematics. Also students should take special care while multiplying, squaring etc. terms which contain decimal.
For example, students often make this mistake of writing ${{\left( 0.4 \right)}^{2}}=1.6$ which is wrong. Actually${{\left( 0.4 \right)}^{2}}=\left( 0.16 \right)$. So this mistake must be avoided.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
