Two years ago, a father was five times as old as his son. Two years later, his age will be $8$ more than three times the age of the son. Find the present age of father and son.
Answer
384.6k+ views
Hint- Assume father’s present age and son’s present age then make equations using given information. Then solve Pair of linear equations in two variables.
Let, father’s present age $ = x$ years
son’s present age $ = y$ years
Considering $2$ years ago,
$ \Rightarrow \left( {x - 2} \right) = 5\left( {y - 2} \right){\text{ - - - - - - - (1)}}$
Considering $2$ years later,
$ \Rightarrow \left( {x + 2} \right) = 8 + 3\left( {y + 2} \right){\text{ - - - - - - - (2)}}$
Rewriting equation $\left( 1 \right)$as:
$
\Rightarrow x - 2 - 5y + 10 = 0 \\
\Rightarrow x - 5y + 8 = 0{\text{ - - - - - - - - (3)}} \\
$
Rewriting equation$\left( 2 \right)$as:
$
\Rightarrow x + 2 - 3y - 6 - 8 = 0 \\
\Rightarrow x - 3y - 12 = 0{\text{ - - - - - - - - (4)}} \\
$
Now, we have two equations and two variables.
By using subtraction method,
Subtracting $\left( 4 \right)$from$\left( 3 \right)$, we get:
$
\Rightarrow x - 5y + 8 - \left( {x - 3y - 12} \right) = 0 - 0 \\
\Rightarrow - 2y + 20 = 0 \\
\Rightarrow y = \dfrac{{20}}{2} \\
\Rightarrow y = 10 \\
$
Putting $y = 10$ in $\left( 4 \right)$, we get:
$
\Rightarrow x - 3\left( {10} \right) - 12 = 0 \\
\Rightarrow x - 30 - 12 = 0 \\
\Rightarrow x - 42 = 0 \\
\Rightarrow x = 42 \\
$
Therefore, father’s present age $ = 42$ years and son’s present age $ = 10$ years
Note- Always let the present ages be some unknown variable and try to write the information given in the problem in form of equations. The three methods most commonly used to solve systems of equations are substitution, elimination and augmented matrices.
Let, father’s present age $ = x$ years
son’s present age $ = y$ years
Considering $2$ years ago,
$ \Rightarrow \left( {x - 2} \right) = 5\left( {y - 2} \right){\text{ - - - - - - - (1)}}$
Considering $2$ years later,
$ \Rightarrow \left( {x + 2} \right) = 8 + 3\left( {y + 2} \right){\text{ - - - - - - - (2)}}$
Rewriting equation $\left( 1 \right)$as:
$
\Rightarrow x - 2 - 5y + 10 = 0 \\
\Rightarrow x - 5y + 8 = 0{\text{ - - - - - - - - (3)}} \\
$
Rewriting equation$\left( 2 \right)$as:
$
\Rightarrow x + 2 - 3y - 6 - 8 = 0 \\
\Rightarrow x - 3y - 12 = 0{\text{ - - - - - - - - (4)}} \\
$
Now, we have two equations and two variables.
By using subtraction method,
Subtracting $\left( 4 \right)$from$\left( 3 \right)$, we get:
$
\Rightarrow x - 5y + 8 - \left( {x - 3y - 12} \right) = 0 - 0 \\
\Rightarrow - 2y + 20 = 0 \\
\Rightarrow y = \dfrac{{20}}{2} \\
\Rightarrow y = 10 \\
$
Putting $y = 10$ in $\left( 4 \right)$, we get:
$
\Rightarrow x - 3\left( {10} \right) - 12 = 0 \\
\Rightarrow x - 30 - 12 = 0 \\
\Rightarrow x - 42 = 0 \\
\Rightarrow x = 42 \\
$
Therefore, father’s present age $ = 42$ years and son’s present age $ = 10$ years
Note- Always let the present ages be some unknown variable and try to write the information given in the problem in form of equations. The three methods most commonly used to solve systems of equations are substitution, elimination and augmented matrices.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

Why do noble gases have positive electron gain enthalpy class 11 chemistry CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

Write an application to the principal requesting five class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
