
Two unbiased dice are thrown. The probability that the total of the numbers on the
Dice is greater than $10$ is $\dfrac{1}{x}$, what is the value of $x$.
Answer
607.2k+ views
Hint: Here two unbiased dice are thrown so the total number of possible outcomes will be $36$. You have to count the number of favorable outcomes where the total of the numbers on the dice is greater than $10$.
As we know, when two unbiased dice are thrown total number of outcomes will be $36$, which are
$
\left( {1,1} \right)\left( {1,2} \right)\left( {1,3} \right)\left( {1,4} \right)\left( {1,5} \right)\left( {1,6} \right) \\
\left( {2,1} \right)\left( {2,2} \right)\left( {2,3} \right)\left( {2,4} \right)\left( {2,5} \right)\left( {2,6} \right) \\
\left( {3,1} \right)\left( {3,2} \right)\left( {3,3} \right)\left( {3,4} \right)\left( {3,5} \right)\left( {3,6} \right) \\
\left( {4,1} \right)\left( {4,2} \right)\left( {4,3} \right)\left( {4,4} \right)\left( {4,5} \right)\left( {4,6} \right) \\
\left( {5,1} \right)\left( {5,2} \right)\left( {5,3} \right)\left( {5,4} \right)\left( {5,5} \right)\left( {5,6} \right) \\
\left( {6,1} \right)\left( {6,2} \right)\left( {6,3} \right)\left( {6,4} \right)\left( {6,5} \right)\left( {6,6} \right) \\
$
These are total $36$ outcomes which will be obtained on throwing two unbiased dice.
Let $E = $Event of getting the total of numbers on the dice is greater than $10$.
So total number of outcomes which sum is greater than $10$are $\left( {5,6} \right)\left( {6,5} \right)\left( {6,6} \right)$ and hence favorable outcomes to $E$ $ = 3$
Probability $P\left( E \right) = \dfrac{{\left( {{\text{no}}{\text{. of favorable outcomes}}} \right)}}{{\left( {{\text{total no}}{\text{. of possible outcomes}}} \right)}}$
$\therefore P\left( E \right) = \dfrac{3}{{36}} = \dfrac{1}{{12}}$
On comparing it with $\dfrac{1}{x}$ we get $x = 12$ is the required answer.
Note: Whenever you get this type of question the key concept of solving is you have to know all the outcomes obtained from the event or if you can write them then you must write it on your copy then count all the favorable outcomes and use the formula of probability to get the answer.
As we know, when two unbiased dice are thrown total number of outcomes will be $36$, which are
$
\left( {1,1} \right)\left( {1,2} \right)\left( {1,3} \right)\left( {1,4} \right)\left( {1,5} \right)\left( {1,6} \right) \\
\left( {2,1} \right)\left( {2,2} \right)\left( {2,3} \right)\left( {2,4} \right)\left( {2,5} \right)\left( {2,6} \right) \\
\left( {3,1} \right)\left( {3,2} \right)\left( {3,3} \right)\left( {3,4} \right)\left( {3,5} \right)\left( {3,6} \right) \\
\left( {4,1} \right)\left( {4,2} \right)\left( {4,3} \right)\left( {4,4} \right)\left( {4,5} \right)\left( {4,6} \right) \\
\left( {5,1} \right)\left( {5,2} \right)\left( {5,3} \right)\left( {5,4} \right)\left( {5,5} \right)\left( {5,6} \right) \\
\left( {6,1} \right)\left( {6,2} \right)\left( {6,3} \right)\left( {6,4} \right)\left( {6,5} \right)\left( {6,6} \right) \\
$
These are total $36$ outcomes which will be obtained on throwing two unbiased dice.
Let $E = $Event of getting the total of numbers on the dice is greater than $10$.
So total number of outcomes which sum is greater than $10$are $\left( {5,6} \right)\left( {6,5} \right)\left( {6,6} \right)$ and hence favorable outcomes to $E$ $ = 3$
Probability $P\left( E \right) = \dfrac{{\left( {{\text{no}}{\text{. of favorable outcomes}}} \right)}}{{\left( {{\text{total no}}{\text{. of possible outcomes}}} \right)}}$
$\therefore P\left( E \right) = \dfrac{3}{{36}} = \dfrac{1}{{12}}$
On comparing it with $\dfrac{1}{x}$ we get $x = 12$ is the required answer.
Note: Whenever you get this type of question the key concept of solving is you have to know all the outcomes obtained from the event or if you can write them then you must write it on your copy then count all the favorable outcomes and use the formula of probability to get the answer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

