Answer
Verified
491.1k+ views
Hint: We want to find the time taken by each tap. For that, assume that the tap $1$ takes "$x$ hours" of time and the tap $2$ takes "$(x+3)$ hours" of time. After that, take the time of two taps for one hour. Arrange the problem as mentioned in question, you will get the answer.
Complete step-by-step answer:
Two taps can fill a tank in $3\dfrac{1}{13}$ hours. One tap takes $3$ hours more than the other tap to fill the tank. Let, tap $1$ take "$x$ hours" of time, then tap $2$ takes "$(x+3)$ hours" of time.
In one hour tap $1$ does $\dfrac{1}{x}$ of work, i.e., fill $\dfrac{1}{x}$of the tank.
In one hour tap $2$, fills $\dfrac{1}{x+3}$ of the tank.
So work done by both the taps in one hour is sum of the work done in one hour by tap $1$and tap $2$ i.e. $\left( \dfrac{1}{x}+\dfrac{1}{x+3} \right)$.
So for $\left( 3\dfrac{1}{13} \right)$hours work done, the entire tank will be filled, as is given, or,
$\left( \dfrac{1}{x}+\dfrac{1}{x+3} \right)\left( 3\dfrac{1}{13} \right)=1$
So simplifying we get,
$\left( \dfrac{1}{x}+\dfrac{1}{x+3} \right)\left( \dfrac{40}{13} \right)=1$
$\begin{align}
& \left( \dfrac{1}{x}+\dfrac{1}{x+3} \right)\left( \dfrac{40}{13} \right)=1 \\
& 80x+120=13{{x}^{2}}+39x \\
& 13{{x}^{2}}-41x-120=0 \\
\end{align}$
We have got a quadratic equation.
Now we know,
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
So here, $a=13,$ $b=-41$, $c=-120$.
Now,
$\begin{align}
& x=\dfrac{-(-41)\pm \sqrt{{{(-41)}^{2}}-4(13)(-120)}}{2(13)} \\
& x=\dfrac{41\pm \sqrt{1681+6240}}{26} \\
& x=\dfrac{41\pm \sqrt{7921}}{26}=\dfrac{41\pm 89}{26} \\
& x=\dfrac{41\pm 89}{26} \\
\end{align}$
So we get,
$x=5$ and $x=-\dfrac{24}{13}$.
Time cannot be negative so we are going to reject the negative value of $x$.
So we get the final answer as $x=5$hours.
Hence, the time taken by tap $1$ to fill the tank is $5$hours and that of tap $2$ is $x+3=5+3=8$hours.
Note: Read the question carefully. Also, take care that no term is missing. Your concept regarding this problem should be clear. Do not make silly mistakes. While simplifying take utmost care that no signs are missing. Solve the problem in step by step way.
Complete step-by-step answer:
Two taps can fill a tank in $3\dfrac{1}{13}$ hours. One tap takes $3$ hours more than the other tap to fill the tank. Let, tap $1$ take "$x$ hours" of time, then tap $2$ takes "$(x+3)$ hours" of time.
In one hour tap $1$ does $\dfrac{1}{x}$ of work, i.e., fill $\dfrac{1}{x}$of the tank.
In one hour tap $2$, fills $\dfrac{1}{x+3}$ of the tank.
So work done by both the taps in one hour is sum of the work done in one hour by tap $1$and tap $2$ i.e. $\left( \dfrac{1}{x}+\dfrac{1}{x+3} \right)$.
So for $\left( 3\dfrac{1}{13} \right)$hours work done, the entire tank will be filled, as is given, or,
$\left( \dfrac{1}{x}+\dfrac{1}{x+3} \right)\left( 3\dfrac{1}{13} \right)=1$
So simplifying we get,
$\left( \dfrac{1}{x}+\dfrac{1}{x+3} \right)\left( \dfrac{40}{13} \right)=1$
$\begin{align}
& \left( \dfrac{1}{x}+\dfrac{1}{x+3} \right)\left( \dfrac{40}{13} \right)=1 \\
& 80x+120=13{{x}^{2}}+39x \\
& 13{{x}^{2}}-41x-120=0 \\
\end{align}$
We have got a quadratic equation.
Now we know,
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
So here, $a=13,$ $b=-41$, $c=-120$.
Now,
$\begin{align}
& x=\dfrac{-(-41)\pm \sqrt{{{(-41)}^{2}}-4(13)(-120)}}{2(13)} \\
& x=\dfrac{41\pm \sqrt{1681+6240}}{26} \\
& x=\dfrac{41\pm \sqrt{7921}}{26}=\dfrac{41\pm 89}{26} \\
& x=\dfrac{41\pm 89}{26} \\
\end{align}$
So we get,
$x=5$ and $x=-\dfrac{24}{13}$.
Time cannot be negative so we are going to reject the negative value of $x$.
So we get the final answer as $x=5$hours.
Hence, the time taken by tap $1$ to fill the tank is $5$hours and that of tap $2$ is $x+3=5+3=8$hours.
Note: Read the question carefully. Also, take care that no term is missing. Your concept regarding this problem should be clear. Do not make silly mistakes. While simplifying take utmost care that no signs are missing. Solve the problem in step by step way.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE