
Two stations due South of a leaning tower which leans towards the North, are at distances a and b from its foot. If $\alpha $ and $\beta $ are the elevations of the top of the tower from these stations, then prove that its inclination $\theta $ to the horizontal is given by
$\cot \theta = \dfrac{{b\cot \alpha - a\cot \beta }}{{b - a}}$
Answer
571.8k+ views
Hint:
First draw the diagram carefully with observation of the question. Then we can see three right angled triangles. Assume the unknown lengths with some variables. Apply suitable trigonometry ratios in all triangles. Do, needed manipulations to get the desired expression given in the question.
Complete step by step solution:
Three triangles are AED , BED and CED.
Let us assume that height of the tower DE = h
Also, assume CD is x
Then distance between first station to foot of tower AD = a+x
and distance between second station to foot of tower BD = b+x
As given in the question, we know that $\alpha $, $\beta $ are the angle of elevation two stations to the top of the tower. Thus we have
$
\angle EAD = \alpha \\
\angle EBD = \beta \\
\angle ECD = \theta \\
$
In $\vartriangle $CDE ,
$\cot \theta = \dfrac{x}{h}$ …(1) ( as cot ratio = $\dfrac{{base}}{{perpendicular}}$ )
In $\vartriangle $BDE ,
$\cot \beta = \dfrac{{x + b}}{h}$ …(2) ( as cot ratio = $\dfrac{{base}}{{perpendicular}}$ )
Similarly in In $\vartriangle $ADE ,
$\cot \alpha = \dfrac{{x + a}}{h}$ …(2) ( as cot ratio = $\dfrac{{base}}{{perpendicular}}$ )
From equation (1) , we have x = h cot$\theta $ , . Using this value in equation (2) and (3) , we get
$\cot \beta = \dfrac{{h\cot \theta + b}}{h}$ …(4)
And $\cot \alpha = \dfrac{{h\cot \theta + a}}{h}$ …(5)
Now by multiplying equation (4) by a on both sides we get
$a\cot \beta = a\cot \theta + \dfrac{{ba}}{h}$ …(6)
Similarly, by multiplying equation (5) by b on both sides we get
$b\cot \alpha = b\cot \theta + \dfrac{{ab}}{h}$ …(7 )
We subtract equation (6) from (7) , we get,
$
b\cot \alpha - a\cot \beta = b\cot \theta - a\cot \theta \\
\Rightarrow (b - a)\cot \theta = b\cot \alpha - a\cot \beta \\
\Rightarrow \cot \theta = \dfrac{{b\cot \alpha - a\cot \beta }}{{b - a}} \\
$
Hence we have proved the expression given in the problem.
Note:
Height and distance problems are very much solvable through the proper use of trigonometry ratios and obviously proper use of algebraic manipulations. Careful visualization of the problem and diagram will make the task easier.
First draw the diagram carefully with observation of the question. Then we can see three right angled triangles. Assume the unknown lengths with some variables. Apply suitable trigonometry ratios in all triangles. Do, needed manipulations to get the desired expression given in the question.
Complete step by step solution:
Three triangles are AED , BED and CED.
Let us assume that height of the tower DE = h
Also, assume CD is x
Then distance between first station to foot of tower AD = a+x
and distance between second station to foot of tower BD = b+x
As given in the question, we know that $\alpha $, $\beta $ are the angle of elevation two stations to the top of the tower. Thus we have
$
\angle EAD = \alpha \\
\angle EBD = \beta \\
\angle ECD = \theta \\
$
In $\vartriangle $CDE ,
$\cot \theta = \dfrac{x}{h}$ …(1) ( as cot ratio = $\dfrac{{base}}{{perpendicular}}$ )
In $\vartriangle $BDE ,
$\cot \beta = \dfrac{{x + b}}{h}$ …(2) ( as cot ratio = $\dfrac{{base}}{{perpendicular}}$ )
Similarly in In $\vartriangle $ADE ,
$\cot \alpha = \dfrac{{x + a}}{h}$ …(2) ( as cot ratio = $\dfrac{{base}}{{perpendicular}}$ )
From equation (1) , we have x = h cot$\theta $ , . Using this value in equation (2) and (3) , we get
$\cot \beta = \dfrac{{h\cot \theta + b}}{h}$ …(4)
And $\cot \alpha = \dfrac{{h\cot \theta + a}}{h}$ …(5)
Now by multiplying equation (4) by a on both sides we get
$a\cot \beta = a\cot \theta + \dfrac{{ba}}{h}$ …(6)
Similarly, by multiplying equation (5) by b on both sides we get
$b\cot \alpha = b\cot \theta + \dfrac{{ab}}{h}$ …(7 )
We subtract equation (6) from (7) , we get,
$
b\cot \alpha - a\cot \beta = b\cot \theta - a\cot \theta \\
\Rightarrow (b - a)\cot \theta = b\cot \alpha - a\cot \beta \\
\Rightarrow \cot \theta = \dfrac{{b\cot \alpha - a\cot \beta }}{{b - a}} \\
$
Hence we have proved the expression given in the problem.
Note:
Height and distance problems are very much solvable through the proper use of trigonometry ratios and obviously proper use of algebraic manipulations. Careful visualization of the problem and diagram will make the task easier.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

