
Two squares have a total size of 20 square centimeters. One square's side is twice as long as the other square's side. How do you calculate the lengths of each square's sides?
Answer
476.1k+ views
Hint:We will assume the length of side of both squares. We will use the formula and find the area of both squares. Using the relation between the sides we will put the values of the sides. We will put the sum of the values of the area of both square equals to 20.
Complete step by step answer:
We will assume the side of smaller square equals to x cm
We have given one square's side is twice as long as the other square's side
So, the length of bigger square is 2x cm
We have given the sum of area of both square is 20
Now, we will find the area of both square
We know that the formula of area of square \[ = {\left( {side} \right)^2}\]
So, the area of square having side x cm
\[ \Rightarrow A = x \times x = {x^2}\]
Area of square having side 2x cm
\[ \Rightarrow A = 2x \times 2x = 4{x^2}\]
We have given the sum of area of both square is 20
$ \Rightarrow {x^2} + 4{x^2} = 20$
$ \Rightarrow 5{x^2} = 20$
We have divided both side by 5
$ \Rightarrow {x^2} = 4$
We have taken root to both side
$ \Rightarrow x = \pm 2$
We know the side cannot be negative so, the side is 2 cm
And the length of bigger square is 4 cm
Hence, the length of side of 2 square is 2 cm and 4 cm ${x^2} = 4$
Note: We used only positive square roots to solve the equation ${x^2} = 4$ in the answer because ‘x' is the length of a side, and the length of a side of a square cannot be negative. The same thing is applied for the area of the square.
Complete step by step answer:
We will assume the side of smaller square equals to x cm
We have given one square's side is twice as long as the other square's side
So, the length of bigger square is 2x cm
We have given the sum of area of both square is 20
Now, we will find the area of both square
We know that the formula of area of square \[ = {\left( {side} \right)^2}\]
So, the area of square having side x cm
\[ \Rightarrow A = x \times x = {x^2}\]
Area of square having side 2x cm
\[ \Rightarrow A = 2x \times 2x = 4{x^2}\]
We have given the sum of area of both square is 20
$ \Rightarrow {x^2} + 4{x^2} = 20$
$ \Rightarrow 5{x^2} = 20$
We have divided both side by 5
$ \Rightarrow {x^2} = 4$
We have taken root to both side
$ \Rightarrow x = \pm 2$
We know the side cannot be negative so, the side is 2 cm
And the length of bigger square is 4 cm
Hence, the length of side of 2 square is 2 cm and 4 cm ${x^2} = 4$
Note: We used only positive square roots to solve the equation ${x^2} = 4$ in the answer because ‘x' is the length of a side, and the length of a side of a square cannot be negative. The same thing is applied for the area of the square.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

