Two numbers are in the ratio 3:5. When each of these numbers is increased by 10, their ratio becomes 5:7. Find the greater number.
Answer
279.9k+ views
Hint: We are given a question of ratios. We will assume the numbers to be $x$ and $y$. And using the information given in the question, we will make equations in two variables and we will solve those equations to obtain the numbers. After finding both numbers, we will find the greater one out of them both and find the answer.
Complete step by step answer:
Assume that the numbers are $x$ and $y$. According to the question:
$\dfrac{x}{y}=\dfrac{3}{5}$
$\implies 5x=3y$
$\implies x=\dfrac{3}{5}y$
Now, we increase each of the numbers by 10. So the numbers now become $x+10$ and $y+10$. Then, according to the question:
$\dfrac{x+10}{y+10}=\dfrac{5}{7}$
$\implies 7\left(x+10\right)=5\left(y+10\right)$
$\implies 7x+70=5y+50$
$\implies 7x-5y+20=0$
Putting the value of $x$ as calculated above, we get:
$7\left(\dfrac{3}{5}y \right)-5y+20=0$
$21y-25y+100=0$
$\implies y=25$
Now to find the value of $x$, we put back the value of $y$. We get:
$x=\dfrac{3}{5}\times 25$
$\implies x=3\times 5=15$
Hence, the two numbers are 15 and 25. The bigger one out of the two is 25. Hence the greater number is 25.
Note: While putting the ratio, make sure that you don’t put it upside down. If $x$ and $y$ are in ratio 1:2 then $y=2x$ and not the other way round. Make sure that you don’t make many calculation mistakes while solving the ratio. Moreover, when the numbers are increased by 10 make sure that you add 10 to both $x$ and $y$.
Complete step by step answer:
Assume that the numbers are $x$ and $y$. According to the question:
$\dfrac{x}{y}=\dfrac{3}{5}$
$\implies 5x=3y$
$\implies x=\dfrac{3}{5}y$
Now, we increase each of the numbers by 10. So the numbers now become $x+10$ and $y+10$. Then, according to the question:
$\dfrac{x+10}{y+10}=\dfrac{5}{7}$
$\implies 7\left(x+10\right)=5\left(y+10\right)$
$\implies 7x+70=5y+50$
$\implies 7x-5y+20=0$
Putting the value of $x$ as calculated above, we get:
$7\left(\dfrac{3}{5}y \right)-5y+20=0$
$21y-25y+100=0$
$\implies y=25$
Now to find the value of $x$, we put back the value of $y$. We get:
$x=\dfrac{3}{5}\times 25$
$\implies x=3\times 5=15$
Hence, the two numbers are 15 and 25. The bigger one out of the two is 25. Hence the greater number is 25.
Note: While putting the ratio, make sure that you don’t put it upside down. If $x$ and $y$ are in ratio 1:2 then $y=2x$ and not the other way round. Make sure that you don’t make many calculation mistakes while solving the ratio. Moreover, when the numbers are increased by 10 make sure that you add 10 to both $x$ and $y$.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Which of the following Chief Justice of India has acted class 10 social science CBSE

Green glands are excretory organs of A Crustaceans class 11 biology CBSE

What if photosynthesis does not occur in plants class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

10 slogans on organ donation class 8 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE
