Answer
Verified
492.9k+ views
Hint: When we cast one solid into another solid, the net Volume of the material does not change. So, compare the Volume of the new sphere with the sum of the volumes of the initial spheres and solve for ${{r}_{3}}$ .
Complete step-by-step answer:
We know that Volume of a sphere = $\dfrac{4}{3}\pi {{r}^{3}}$
Hence the Volume of the first sphere = $\dfrac{4}{3}\pi {{r}_{1}}^{3}$
And the Volume of the second sphere = $\dfrac{4}{3}\pi {{r}_{2}}^{3}$
Net Volume of the material = $\dfrac{4}{3}\pi {{r}_{1}}^{3}+\dfrac{4}{3}\pi {{r}_{2}}^{3}$
Also, net Volume of material = Volume of the new sphere
$\Rightarrow \dfrac{4}{3}\pi {{r}_{3}}^{3}=\dfrac{4}{3}\pi {{r}_{1}}^{3}+\dfrac{4}{3}\pi {{r}_{2}}^{3}$
Taking \[\dfrac{4}{3}\pi \] common from RHS, we get
$\Rightarrow \dfrac{4}{3}\pi {{r}_{3}}^{3}=\dfrac{4}{3}\pi \left( {{r}_{1}}^{3}+{{r}_{2}}^{3} \right)$
Multiplying both sides by $\dfrac{3}{4\pi }$ we get
$\begin{align}
& \Rightarrow \dfrac{4}{3}\pi {{r}_{3}}^{3}\times \dfrac{3}{4\pi }=\dfrac{4}{3}\pi \left( {{r}_{1}}^{3}+{{r}_{2}}^{3} \right)\times \dfrac{3}{4\pi } \\
& \Rightarrow {{r}_{3}}^{3}={{r}_{1}}^{3}+{{r}_{2}}^{3} \\
\end{align}$
Raising power $\dfrac{1}{3}$ on both sides, we get
$\Rightarrow {{\left( {{r}_{3}}^{3} \right)}^{\dfrac{1}{3}}}={{\left( {{r}_{1}}^{3}+{{r}_{2}}^{3} \right)}^{\dfrac{1}{3}}}$
i.e. ${{r}_{3}}={{\left( {{r}_{1}}^{3}+{{r}_{2}}^{3} \right)}^{\dfrac{1}{3}}}$
Hence proved.
Note:
[a] Casting one or more two solids to other solids is like pouring water from one or more utensils into other one or more utensils. Although the shape will change, the net quantity of water will remain constant. Therefore, we compared the value of the Volume of new solid to the sum of volumes of the individual solids.
[b] Some important formulae to remember:
[1] Volume of a Cube = ${{a}^{3}}$
[2] Volume of a Cuboid = $lbh$
[3] Volume of a right circular cylinder = $\pi {{r}^{2}}h$
[4] Volume of a right circular cone = $\dfrac{1}{3}\pi {{r}^{2}}h$
[5] Volume of a sphere = $\dfrac{4}{3}\pi {{r}^{3}}$
These formulae often come in handy while solving such questions based on the volume of solid objects and hence, should be memorized.
Complete step-by-step answer:
We know that Volume of a sphere = $\dfrac{4}{3}\pi {{r}^{3}}$
Hence the Volume of the first sphere = $\dfrac{4}{3}\pi {{r}_{1}}^{3}$
And the Volume of the second sphere = $\dfrac{4}{3}\pi {{r}_{2}}^{3}$
Net Volume of the material = $\dfrac{4}{3}\pi {{r}_{1}}^{3}+\dfrac{4}{3}\pi {{r}_{2}}^{3}$
Also, net Volume of material = Volume of the new sphere
$\Rightarrow \dfrac{4}{3}\pi {{r}_{3}}^{3}=\dfrac{4}{3}\pi {{r}_{1}}^{3}+\dfrac{4}{3}\pi {{r}_{2}}^{3}$
Taking \[\dfrac{4}{3}\pi \] common from RHS, we get
$\Rightarrow \dfrac{4}{3}\pi {{r}_{3}}^{3}=\dfrac{4}{3}\pi \left( {{r}_{1}}^{3}+{{r}_{2}}^{3} \right)$
Multiplying both sides by $\dfrac{3}{4\pi }$ we get
$\begin{align}
& \Rightarrow \dfrac{4}{3}\pi {{r}_{3}}^{3}\times \dfrac{3}{4\pi }=\dfrac{4}{3}\pi \left( {{r}_{1}}^{3}+{{r}_{2}}^{3} \right)\times \dfrac{3}{4\pi } \\
& \Rightarrow {{r}_{3}}^{3}={{r}_{1}}^{3}+{{r}_{2}}^{3} \\
\end{align}$
Raising power $\dfrac{1}{3}$ on both sides, we get
$\Rightarrow {{\left( {{r}_{3}}^{3} \right)}^{\dfrac{1}{3}}}={{\left( {{r}_{1}}^{3}+{{r}_{2}}^{3} \right)}^{\dfrac{1}{3}}}$
i.e. ${{r}_{3}}={{\left( {{r}_{1}}^{3}+{{r}_{2}}^{3} \right)}^{\dfrac{1}{3}}}$
Hence proved.
Note:
[a] Casting one or more two solids to other solids is like pouring water from one or more utensils into other one or more utensils. Although the shape will change, the net quantity of water will remain constant. Therefore, we compared the value of the Volume of new solid to the sum of volumes of the individual solids.
[b] Some important formulae to remember:
[1] Volume of a Cube = ${{a}^{3}}$
[2] Volume of a Cuboid = $lbh$
[3] Volume of a right circular cylinder = $\pi {{r}^{2}}h$
[4] Volume of a right circular cone = $\dfrac{1}{3}\pi {{r}^{2}}h$
[5] Volume of a sphere = $\dfrac{4}{3}\pi {{r}^{3}}$
These formulae often come in handy while solving such questions based on the volume of solid objects and hence, should be memorized.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE