
Two concentric circles of radii a and b, where a > b, are given. The length of the chord of the larger circle which touches the smaller circle is:
a. $\sqrt{{{a}^{2}}-{{b}^{2}}}$
b. $\sqrt{{{a}^{2}}+{{b}^{2}}}$
c. $2\sqrt{{{a}^{2}}-{{b}^{2}}}$
d. $2\sqrt{{{a}^{2}}+{{b}^{2}}}$
Answer
600.6k+ views
Hint: By using the theorem “The tangent and radius at point of contact are perpendicular”, the angle made by the radius of small circle with one of the end point of the chord which touches the larger circle is ${{90}^{\circ }}$. Applying the Pythagoras theorem in the obtained triangle, we get the length of half chord. After applying the theorem “The perpendicular drawn from the center bisect the chord”, we get the length of the chord. Using this methodology, we can easily solve the problem.
Complete Step-by-Step solution:
We draw two circles having center O. The radius of the smaller circle is OC and the radius of the larger circle is OA. AB is the chord in a larger circle which touches a smaller circle at a point C. Now, we have to find the length of AB.
$\angle OEC={{90}^{\circ }}$ (Using the theorem “The tangent and radius at the point of contact are perpendicular”)
As stated by Pythagoras, In the right-angle triangle, the sum of squares of hypotenuse is equal to the sum of squares of both other sides. Now, applying the Pythagoras theorem in the triangle AOC, we get
$\begin{align}
& A{{O}^{2}}=O{{C}^{2}}+A{{C}^{2}} \\
& {{a}^{2}}={{b}^{2}}+A{{C}^{2}} \\
& AC=\sqrt{{{a}^{2}}-{{b}^{2}}} \\
\end{align}$
Now, by using the theorem “the perpendicular drawn from the center of the circle bisects the chord”, we can express AB as, AB = 2AC.
$AB=2\sqrt{{{a}^{2}}-{{b}^{2}}}$
Hence, the length of the chord is $2\sqrt{{{a}^{2}}-{{b}^{2}}}$.
Therefore, option (c) is correct.
Note: The key concept in solving this problem is the knowledge of theorems related to circles. By using various properties, we obtained our answer without any error. This knowledge is helpful in solving complex problems.
Complete Step-by-Step solution:
We draw two circles having center O. The radius of the smaller circle is OC and the radius of the larger circle is OA. AB is the chord in a larger circle which touches a smaller circle at a point C. Now, we have to find the length of AB.
$\angle OEC={{90}^{\circ }}$ (Using the theorem “The tangent and radius at the point of contact are perpendicular”)
As stated by Pythagoras, In the right-angle triangle, the sum of squares of hypotenuse is equal to the sum of squares of both other sides. Now, applying the Pythagoras theorem in the triangle AOC, we get
$\begin{align}
& A{{O}^{2}}=O{{C}^{2}}+A{{C}^{2}} \\
& {{a}^{2}}={{b}^{2}}+A{{C}^{2}} \\
& AC=\sqrt{{{a}^{2}}-{{b}^{2}}} \\
\end{align}$
Now, by using the theorem “the perpendicular drawn from the center of the circle bisects the chord”, we can express AB as, AB = 2AC.
$AB=2\sqrt{{{a}^{2}}-{{b}^{2}}}$
Hence, the length of the chord is $2\sqrt{{{a}^{2}}-{{b}^{2}}}$.
Therefore, option (c) is correct.
Note: The key concept in solving this problem is the knowledge of theorems related to circles. By using various properties, we obtained our answer without any error. This knowledge is helpful in solving complex problems.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

State BPT theorem and prove it class 10 maths CBSE

A triangle ABC is drawn to circumscribe a circle of class 10 maths CBSE

What is Contraception List its four different methods class 10 biology CBSE

Difference between mass and weight class 10 physics CBSE

