
Two concentric circles of radii 5cm and 3cm. Find the length of the chord of the larger circle which touches the smaller circle.
Answer
504.6k+ views
Hint: - Perpendicular drawn from the center to the chord of the circle bisects the chord.
Two concentric circles of radii 5cm and 3cm are shown in figure.
$ \Rightarrow {\text{OA = 3cm and OP = 5cm}}$
Now we have to find out the chord of the larger circle which touches the smaller circle.
$ \Rightarrow $So, from the figure we have to find out the value of PQ.
In triangle OAP by, Pythagoras Theorem, we have
$
{\text{O}}{{\text{A}}^2}{\text{ + A}}{{\text{P}}^2}{\text{ = O}}{{\text{P}}^2} \\
\Rightarrow {\text{A}}{{\text{P}}^2} = {5^2} - {3^2} \\
\Rightarrow {\text{A}}{{\text{P}}^2} = 25 - 9 = 16 = {4^2} \\
\Rightarrow {\text{AP = 4cm}} \\
$
As we know that the perpendicular drawn from the center to the chord of the circle bisects the chord.
$\therefore {\text{PQ = 2AP = 2}} \times 4 = 8cm$
So, the length of the chord which touches the smaller circle is 8 cm.
Note: - Concentric circles are the circles with a common center and whenever we face such types of problem first draw the pictorial representation then draw the perpendicular from the center on the chord of the circle which divide the chord into two equal parts, then apply Pythagoras Theorem we will get the required answer.
Two concentric circles of radii 5cm and 3cm are shown in figure.
$ \Rightarrow {\text{OA = 3cm and OP = 5cm}}$
Now we have to find out the chord of the larger circle which touches the smaller circle.
$ \Rightarrow $So, from the figure we have to find out the value of PQ.
In triangle OAP by, Pythagoras Theorem, we have
$
{\text{O}}{{\text{A}}^2}{\text{ + A}}{{\text{P}}^2}{\text{ = O}}{{\text{P}}^2} \\
\Rightarrow {\text{A}}{{\text{P}}^2} = {5^2} - {3^2} \\
\Rightarrow {\text{A}}{{\text{P}}^2} = 25 - 9 = 16 = {4^2} \\
\Rightarrow {\text{AP = 4cm}} \\
$
As we know that the perpendicular drawn from the center to the chord of the circle bisects the chord.
$\therefore {\text{PQ = 2AP = 2}} \times 4 = 8cm$
So, the length of the chord which touches the smaller circle is 8 cm.
Note: - Concentric circles are the circles with a common center and whenever we face such types of problem first draw the pictorial representation then draw the perpendicular from the center on the chord of the circle which divide the chord into two equal parts, then apply Pythagoras Theorem we will get the required answer.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

