Answer

Verified

449.7k+ views

Hint: Consider 2 triangles with centre ${{r}_{1}}$and${{r}_{2}}$. We have been given combined area and distance between centres of radius. Substitute there in the sum of areas. Simplify it to a quadratic equation and roots will give the radius of both circles.

Complete step-by-step answer:

Let us consider two circles with centres ${{O}_{1}}$ and ${{O}_{2}}$. Let ${{r}_{1}}$be the radius of circle 1 and ${{r}_{2}}$ be the radius of circle 2.

Given that the distance between the centers of circle 1 and 2 is 14cm.

$\begin{align}

& \Rightarrow {{r}_{1}}+{{r}_{2}}=14 \\

& \therefore {{r}_{2}}=14-{{r}_{1}}\ldots \ldots (1) \\

\end{align}$

Given that the sum of areas of 2 circles is $130\pi $

Let ${{A}_{1}}$ be the area of circle 1 and ${{A}_{2}}$be the area of circle 2.

$\therefore {{A}_{1}}+{{A}_{2}}=130\pi \ldots \ldots (2)$

We know area, \[A=\pi {{r}^{2}}\]

$\therefore {{A}_{1}}=\pi {{r}_{1}}^{2},{{A}_{2}}=\pi {{r}_{2}}^{2}$; cancel $\pi $ from RHS & LHS

$\therefore \pi {{r}_{1}}^{2}+\pi {{r}_{2}}^{2}=130\ldots \ldots (3)$

Substitute equation (1) in equation (3)

${{r}_{1}}^{2}+{{\left( 14-{{r}_{1}} \right)}^{2}}=130$

We know that,

$\begin{align}

& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\

& \Rightarrow {{r}_{1}}^{2}+{{14}^{2}}-2\times 14{{r}_{1}}+{{r}_{1}}^{2}=130 \\

& \Rightarrow {{r}_{1}}^{2}-28{{r}_{1}}+{{r}_{1}}^{2}=130-96 \\

& \therefore 2{{r}_{1}}^{2}-28{{r}_{1}}=-66 \\

& \Rightarrow 2{{r}_{1}}^{2}-28{{r}_{1}}+66=0\ldots \ldots (4) \\

\end{align}$

Divide throughout by 2 in equation (4)

$\Rightarrow {{r}_{1}}^{2}-14{{r}_{1}}+33=0\ldots \ldots (5)$

The obtained equation (5) is similar to the general equation $a{{x}^{2}}+bx+c=0$. So comparing them we get a=1, b=-14, c=33.

Substitute the values in quadratic equation,

$\begin{align}

& \dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}=\dfrac{-(-14)\pm \sqrt{{{\left( -14 \right)}^{2}}-4\times 1\times 33}}{2\times 1} \\

& =\dfrac{14\pm \sqrt{196-32}}{2}=\dfrac{14\pm \sqrt{64}}{2}=\dfrac{14\pm 8}{2} \\

\end{align}$

$\therefore $Roots are $\left( \dfrac{14+8}{2} \right)$and $\left( \dfrac{14-8}{2} \right)$= 11 and 3 cm.

$\therefore $${{r}_{1}}$=11cm

${{r}_{2}}$=14-${{r}_{1}}$=3cm

Radii of two circles are 11cm and 3cm.

Note: When ${{r}_{1}}$=11cm, substituting ${{r}_{2}}$=14-11=3cm. Similarly if ${{r}_{1}}$=3cm, substituting ${{r}_{2}}$=14-3=11cm

So the radius of two circles is 11cm and 3cm, irrespective of where the bigger and smaller circle comes.

Complete step-by-step answer:

Let us consider two circles with centres ${{O}_{1}}$ and ${{O}_{2}}$. Let ${{r}_{1}}$be the radius of circle 1 and ${{r}_{2}}$ be the radius of circle 2.

Given that the distance between the centers of circle 1 and 2 is 14cm.

$\begin{align}

& \Rightarrow {{r}_{1}}+{{r}_{2}}=14 \\

& \therefore {{r}_{2}}=14-{{r}_{1}}\ldots \ldots (1) \\

\end{align}$

Given that the sum of areas of 2 circles is $130\pi $

Let ${{A}_{1}}$ be the area of circle 1 and ${{A}_{2}}$be the area of circle 2.

$\therefore {{A}_{1}}+{{A}_{2}}=130\pi \ldots \ldots (2)$

We know area, \[A=\pi {{r}^{2}}\]

$\therefore {{A}_{1}}=\pi {{r}_{1}}^{2},{{A}_{2}}=\pi {{r}_{2}}^{2}$; cancel $\pi $ from RHS & LHS

$\therefore \pi {{r}_{1}}^{2}+\pi {{r}_{2}}^{2}=130\ldots \ldots (3)$

Substitute equation (1) in equation (3)

${{r}_{1}}^{2}+{{\left( 14-{{r}_{1}} \right)}^{2}}=130$

We know that,

$\begin{align}

& {{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\

& \Rightarrow {{r}_{1}}^{2}+{{14}^{2}}-2\times 14{{r}_{1}}+{{r}_{1}}^{2}=130 \\

& \Rightarrow {{r}_{1}}^{2}-28{{r}_{1}}+{{r}_{1}}^{2}=130-96 \\

& \therefore 2{{r}_{1}}^{2}-28{{r}_{1}}=-66 \\

& \Rightarrow 2{{r}_{1}}^{2}-28{{r}_{1}}+66=0\ldots \ldots (4) \\

\end{align}$

Divide throughout by 2 in equation (4)

$\Rightarrow {{r}_{1}}^{2}-14{{r}_{1}}+33=0\ldots \ldots (5)$

The obtained equation (5) is similar to the general equation $a{{x}^{2}}+bx+c=0$. So comparing them we get a=1, b=-14, c=33.

Substitute the values in quadratic equation,

$\begin{align}

& \dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}=\dfrac{-(-14)\pm \sqrt{{{\left( -14 \right)}^{2}}-4\times 1\times 33}}{2\times 1} \\

& =\dfrac{14\pm \sqrt{196-32}}{2}=\dfrac{14\pm \sqrt{64}}{2}=\dfrac{14\pm 8}{2} \\

\end{align}$

$\therefore $Roots are $\left( \dfrac{14+8}{2} \right)$and $\left( \dfrac{14-8}{2} \right)$= 11 and 3 cm.

$\therefore $${{r}_{1}}$=11cm

${{r}_{2}}$=14-${{r}_{1}}$=3cm

Radii of two circles are 11cm and 3cm.

Note: When ${{r}_{1}}$=11cm, substituting ${{r}_{2}}$=14-11=3cm. Similarly if ${{r}_{1}}$=3cm, substituting ${{r}_{2}}$=14-3=11cm

So the radius of two circles is 11cm and 3cm, irrespective of where the bigger and smaller circle comes.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

How many crores make 10 million class 7 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths