
Two angles of an eight sided polygon are \[142^\circ \]land \[176^\circ \]. If the remaining angles equal to each other; find the magnitude of each of the angles.
A. \[156^\circ \]
B. \[127^\circ \]
C. \[136^\circ \]
D. \[116^\circ \]
Answer
568.5k+ views
Hint: To solve the question at first we have to find the sum of all interior angles of an eight sided polygon using the angle formula of a polygon. Then we have to consider the magnitude of each of the remaining angles to be\[{x^ \circ }\]. After that we must add all of the eight angles and equate to the sum of the interior angle obtained using the formula before. Finally we can get the value of x by solving the equation.
Complete step-by-step answer:
We know the formula that the sum of all angles of a polygon is given by \[{180^ \circ }\left( {n - 2} \right)\] where n is the number of sides of the polygon.
Here \[n = 8\], hence by applying the formula, the sum of all interior angles of the eight sided polygon is given by,\[180^\circ \left( {8 - 2} \right) = 180^\circ \times 6 = 1080^\circ \].
Given that the two angles are \[142^\circ \]and\[176^\circ \]. Let the remaining six angles are each of magnitude \[x^\circ \]. Then the sum of the angles is \[142^\circ + 176^\circ + 6x = 318^\circ + 6x\].
Therefore we get,
\[\begin{align}
\Rightarrow 318^\circ + 6x = 1080^\circ
\Rightarrow 6x = 762^\circ \\
\Rightarrow x = 127^\circ \\
\end{align} \]
Hence we got that the remaining angles are each of magnitude \[127^\circ \].
Note: The sum of all interior angles of an eight sided polygon is \[1080{}^\circ \]. Each of the angles of an eight sided angle must be obtuse. Always remember that, sum of all angles of a polygon is given by \[{{180}^{\circ }}\left( n-2 \right)\] where n is the number of sides of the polygon. When you do calculation, then try not to do any calculation error as this will change the final answer.
Complete step-by-step answer:
We know the formula that the sum of all angles of a polygon is given by \[{180^ \circ }\left( {n - 2} \right)\] where n is the number of sides of the polygon.
Here \[n = 8\], hence by applying the formula, the sum of all interior angles of the eight sided polygon is given by,\[180^\circ \left( {8 - 2} \right) = 180^\circ \times 6 = 1080^\circ \].
Given that the two angles are \[142^\circ \]and\[176^\circ \]. Let the remaining six angles are each of magnitude \[x^\circ \]. Then the sum of the angles is \[142^\circ + 176^\circ + 6x = 318^\circ + 6x\].
Therefore we get,
\[\begin{align}
\Rightarrow 318^\circ + 6x = 1080^\circ
\Rightarrow 6x = 762^\circ \\
\Rightarrow x = 127^\circ \\
\end{align} \]
Hence we got that the remaining angles are each of magnitude \[127^\circ \].
Note: The sum of all interior angles of an eight sided polygon is \[1080{}^\circ \]. Each of the angles of an eight sided angle must be obtuse. Always remember that, sum of all angles of a polygon is given by \[{{180}^{\circ }}\left( n-2 \right)\] where n is the number of sides of the polygon. When you do calculation, then try not to do any calculation error as this will change the final answer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

