
Twenty meters of wire is available for fencing off a flower-bed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed is:
A. 12.5
B.10
C.25
D.30
Answer
597k+ views
Hint: Use the concept of maxima- minima. Single derivative or double derivative rule. It’s up to you. Get the extreme points and then find the maximum value.
We know that the area of the circular sector is $A = \dfrac{1}{2} \times l \times r$, where l is length and r is the radius of circular sector. Also, $20 = 2r + l$ which implies $l = 20 - 2r$.
Now, using the value of l in the area formula we get, $A = \dfrac{1}{2}(20 - 2r)r = 10r - {r^2}$. On differentiating it, $\dfrac{{dA}}{{dr}} = 10 - 2r$. Notice that, we need the r where $\dfrac{{dA}}{{dr}}$ is maximum. So, we need to consider $\dfrac{{dA}}{{dr}} = 0$ to get the extreme points of r. So, $\dfrac{{dA}}{{dr}} = 0 \Rightarrow 2r = 10 \Rightarrow r = 5$. Double differentiation of A will give us, $\dfrac{{{d^2}A}}{{d{r^2}}} = - 2$. Which is negative.
It means whatever point we have got on considering $\dfrac{{dA}}{{dr}} = 0$ will be the point of maximum. Hence, $r = 5$ is the maximum point. The maximum value will be $A = 10 \times 5 - {5^2} = 50 - 25 = 25{\text{ }}{m^2}$.
Hence, option C is the correct option.
Note: Here, we have used the double differentiation rule of maxima-minima. One can also use other rules. For example: - single differentiation rule.
We know that the area of the circular sector is $A = \dfrac{1}{2} \times l \times r$, where l is length and r is the radius of circular sector. Also, $20 = 2r + l$ which implies $l = 20 - 2r$.
Now, using the value of l in the area formula we get, $A = \dfrac{1}{2}(20 - 2r)r = 10r - {r^2}$. On differentiating it, $\dfrac{{dA}}{{dr}} = 10 - 2r$. Notice that, we need the r where $\dfrac{{dA}}{{dr}}$ is maximum. So, we need to consider $\dfrac{{dA}}{{dr}} = 0$ to get the extreme points of r. So, $\dfrac{{dA}}{{dr}} = 0 \Rightarrow 2r = 10 \Rightarrow r = 5$. Double differentiation of A will give us, $\dfrac{{{d^2}A}}{{d{r^2}}} = - 2$. Which is negative.
It means whatever point we have got on considering $\dfrac{{dA}}{{dr}} = 0$ will be the point of maximum. Hence, $r = 5$ is the maximum point. The maximum value will be $A = 10 \times 5 - {5^2} = 50 - 25 = 25{\text{ }}{m^2}$.
Hence, option C is the correct option.
Note: Here, we have used the double differentiation rule of maxima-minima. One can also use other rules. For example: - single differentiation rule.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Choose the word opposite in the meaning to the given class 10 english CBSE

Our national song Vande Mataram was taken from which class 10 social science CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

Who gave the slogan Jai Jawan Jai Kisan A Pandit Jawaharlal class 10 social science CBSE

Five things I will do to build a great India class 10 english CBSE

