
TThe \[{{4}^{th}}\],\[{{42}^{nd}}\] and last term of an AP are 0, -95 and -125 respectively. Find the first term and the number of terms.
Answer
547.8k+ views
Hint: Consider any AP whose first term is ‘a’ and the common difference is ‘d’. Write \[{{n}^{th}}\] term of AP as \[{{a}_{n}}=a+\left( n-1 \right)d\]. Write equations for terms of an AP and solve them using elimination method to get the value of a, n and d.
Complete step by step answer:
We have an AP whose \[{{4}^{th}},{{42}^{nd}}\] and last term is 0, -95 and -125. We have to find the first term of AP and the number of terms in AP.
Let’s assume that the first term of AP is ‘a’ and the common difference is ‘d’.
We know that we can write the \[{{n}^{th}}\] term of AP as \[{{a}_{n}}=a+\left( n-1 \right)d\].
Substituting \[n=4\] in the above equation, we have \[{{a}_{4}}=a+\left( 4-1 \right)d\]. Thus, we have \[a+3d=0.....\left( 1 \right)\].
Substituting \[n=42\] in the above equation, we have \[{{a}_{42}}=a+\left( 42-1 \right)d\]. Thus, we have \[a+41d=-95.....\left( 2 \right)\].
Subtracting equation (1) from equation (2), we have \[a+41d-\left( a+3d \right)=-95-0\].
Thus, we have \[38d=-95\Rightarrow d=-\dfrac{95}{38}=-2.5\].
Substituting the value \[d=-2.5\] in equation (1), we have \[a+3\left( -2.5 \right)=0\].
Thus, we have \[a=-7.5\].
We know that the last term of this AP is -125. Let’s assume that there are ‘x’ terms in this AP.
Thus, we have \[{{a}_{x}}=a+\left( x-1 \right)d=-125\].
Substituting \[a=-7.5,d=-2.5\] in the above formula, we have \[-7.5+\left( x-1 \right)\left( -2.5 \right)=-125\].
Simplifying the above equation, we have \[\left( x-1 \right)\left( -2.5 \right)=-117.5\].
Thus, we have \[x-1=\dfrac{-117.5}{-2.5}=47\].
So, we have \[x=47+1=48\].
Hence, the first term of this AP is -7.5 and the number of terms is 48.
Note: One must clearly know the definition of AP. Arithmetic Progression (AP) is the sequence of numbers in which the difference of two consecutive terms is a constant. We can also solve these linear equations by substitution method. We can check if the calculated solutions are correct or not by substituting the values in the equations and checking if they satisfy the equations or not.
Complete step by step answer:
We have an AP whose \[{{4}^{th}},{{42}^{nd}}\] and last term is 0, -95 and -125. We have to find the first term of AP and the number of terms in AP.
Let’s assume that the first term of AP is ‘a’ and the common difference is ‘d’.
We know that we can write the \[{{n}^{th}}\] term of AP as \[{{a}_{n}}=a+\left( n-1 \right)d\].
Substituting \[n=4\] in the above equation, we have \[{{a}_{4}}=a+\left( 4-1 \right)d\]. Thus, we have \[a+3d=0.....\left( 1 \right)\].
Substituting \[n=42\] in the above equation, we have \[{{a}_{42}}=a+\left( 42-1 \right)d\]. Thus, we have \[a+41d=-95.....\left( 2 \right)\].
Subtracting equation (1) from equation (2), we have \[a+41d-\left( a+3d \right)=-95-0\].
Thus, we have \[38d=-95\Rightarrow d=-\dfrac{95}{38}=-2.5\].
Substituting the value \[d=-2.5\] in equation (1), we have \[a+3\left( -2.5 \right)=0\].
Thus, we have \[a=-7.5\].
We know that the last term of this AP is -125. Let’s assume that there are ‘x’ terms in this AP.
Thus, we have \[{{a}_{x}}=a+\left( x-1 \right)d=-125\].
Substituting \[a=-7.5,d=-2.5\] in the above formula, we have \[-7.5+\left( x-1 \right)\left( -2.5 \right)=-125\].
Simplifying the above equation, we have \[\left( x-1 \right)\left( -2.5 \right)=-117.5\].
Thus, we have \[x-1=\dfrac{-117.5}{-2.5}=47\].
So, we have \[x=47+1=48\].
Hence, the first term of this AP is -7.5 and the number of terms is 48.
Note: One must clearly know the definition of AP. Arithmetic Progression (AP) is the sequence of numbers in which the difference of two consecutive terms is a constant. We can also solve these linear equations by substitution method. We can check if the calculated solutions are correct or not by substituting the values in the equations and checking if they satisfy the equations or not.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

When and how did Canada eventually gain its independence class 10 social science CBSE
