 Questions & Answers    Question Answers

# To find $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{(\ln (\{x\}+|[x]|))}^{\{x\}}}$, where {} denotes fractional part function and [] denotes greatest integer function, is?(a) 0(b) 1(c) ln 2(d) ln $\dfrac{1}{2}$  Answer Verified
Hint: To solve the above problem, concepts of greatest integer function, fractional part function and basics of limits are required. Greatest integer function of any number x is the nearest integer to x which is less than or equal to x. Fractional part function basically gives the decimal part of any number (for 1.6, {1.6} = 0.6). We will use these properties to simplify the above function given inside the limits. In addition, we will also make use of the property, [x] = x – {x}.

Complete step by step answer:
Before beginning the problem, we try to understand the basic concepts which will be required to solve the problem. The greatest integer function ([x]) basically gives the nearest integer to x which is less than or equal to x. Thus, for example, for 1.9, we have [1.9] =1.

Further, [-1.2] = -2 and so on. In the case of the fractional part, this function gives the decimal part of any number. For example, in case of 1.6, {1.6} = 0.6). Now, we come back to the problem in hand, we have,

=$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{(\ln (\{x\}+|[x]|))}^{\{x\}}}$

Now, if x$\to {{0}^{-}}$, we can have h (for h>0) , x$\to$-h. Thus, we have

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln (\{-h\}+|[-h]|))}^{\{-h\}}}$

Since, h is close to zero and positive quantity, -h would be negative and close to zero (say

-0.001). Thus, [-h] = -1. Thus, substituting above,

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln (\{-h\}+|-1|))}^{\{-h\}}}$

Now, |-1| = 1 (since, the absolute function of any number is the positive part of that number.

That is, |-2| =2 and so on.)

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln (\{-h\}+1))}^{\{-h\}}}$

Now, using, [h]=h-{h}, we have,

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln ((-h-[-h])+1))}^{(-h-[-h])}}$

Since, [-h] = -1, we have,

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln ((-h-(-1))+1))}^{(-h-(-1))}}$

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln ((-h+1)+1))}^{(-h+1)}}$

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln (2-h))}^{(-h+1)}}$

Now, we can put h=0 in this above expression, we get,

= ln (2)

Hence, the correct answer is (c) ln (2).

Note: While solving questions related to one sided limits ($x\to {{0}^{+}}$ or $x\to {{0}^{-}}$), we substitute h in place of x (for $x\to {{0}^{+}}$) and (-h) [for $x\to {{0}^{-}}$] and then solve for h$\to$0. We try to solve the function inside the limits till we can successfully substitute h=0 (without getting an indeterminate form).

Bookmark added to your notes.
View Notes
Difference Between Log and Ln  ICSE Full Form  How To Find Median?  Limits and Continuity  Continuity and Differentiability  How to Find Square Root  How to Find The Median?  How to Find Cube Root?  How to Find Prime Numbers?  How to Find Direction Ratios and Direction Cosines?  