Answer

Verified

447.6k+ views

Hint: To solve the above problem, concepts of greatest integer function, fractional part function and basics of limits are required. Greatest integer function of any number x is the nearest integer to x which is less than or equal to x. Fractional part function basically gives the decimal part of any number (for 1.6, {1.6} = 0.6). We will use these properties to simplify the above function given inside the limits. In addition, we will also make use of the property, [x] = x – {x}.

Complete step by step answer:

Before beginning the problem, we try to understand the basic concepts which will be required to solve the problem. The greatest integer function ([x]) basically gives the nearest integer to x which is less than or equal to x. Thus, for example, for 1.9, we have [1.9] =1.

Further, [-1.2] = -2 and so on. In the case of the fractional part, this function gives the decimal part of any number. For example, in case of 1.6, {1.6} = 0.6). Now, we come back to the problem in hand, we have,

=$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{(\ln (\{x\}+|[x]|))}^{\{x\}}}$

Now, if x$\to {{0}^{-}}$, we can have h (for h>0) , x$\to $-h. Thus, we have

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln (\{-h\}+|[-h]|))}^{\{-h\}}}$

Since, h is close to zero and positive quantity, -h would be negative and close to zero (say

-0.001). Thus, [-h] = -1. Thus, substituting above,

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln (\{-h\}+|-1|))}^{\{-h\}}}$

Now, |-1| = 1 (since, the absolute function of any number is the positive part of that number.

That is, |-2| =2 and so on.)

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln (\{-h\}+1))}^{\{-h\}}}$

Now, using, [h]=h-{h}, we have,

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln ((-h-[-h])+1))}^{(-h-[-h])}}$

Since, [-h] = -1, we have,

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln ((-h-(-1))+1))}^{(-h-(-1))}}$

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln ((-h+1)+1))}^{(-h+1)}}$

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln (2-h))}^{(-h+1)}}$

Now, we can put h=0 in this above expression, we get,

= ln (2)

Hence, the correct answer is (c) ln (2).

Note: While solving questions related to one sided limits ($x\to {{0}^{+}}$ or $x\to {{0}^{-}}$), we substitute h in place of x (for $x\to {{0}^{+}}$) and (-h) [for $x\to {{0}^{-}}$] and then solve for h$\to $0. We try to solve the function inside the limits till we can successfully substitute h=0 (without getting an indeterminate form).

Complete step by step answer:

Before beginning the problem, we try to understand the basic concepts which will be required to solve the problem. The greatest integer function ([x]) basically gives the nearest integer to x which is less than or equal to x. Thus, for example, for 1.9, we have [1.9] =1.

Further, [-1.2] = -2 and so on. In the case of the fractional part, this function gives the decimal part of any number. For example, in case of 1.6, {1.6} = 0.6). Now, we come back to the problem in hand, we have,

=$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{(\ln (\{x\}+|[x]|))}^{\{x\}}}$

Now, if x$\to {{0}^{-}}$, we can have h (for h>0) , x$\to $-h. Thus, we have

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln (\{-h\}+|[-h]|))}^{\{-h\}}}$

Since, h is close to zero and positive quantity, -h would be negative and close to zero (say

-0.001). Thus, [-h] = -1. Thus, substituting above,

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln (\{-h\}+|-1|))}^{\{-h\}}}$

Now, |-1| = 1 (since, the absolute function of any number is the positive part of that number.

That is, |-2| =2 and so on.)

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln (\{-h\}+1))}^{\{-h\}}}$

Now, using, [h]=h-{h}, we have,

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln ((-h-[-h])+1))}^{(-h-[-h])}}$

Since, [-h] = -1, we have,

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln ((-h-(-1))+1))}^{(-h-(-1))}}$

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln ((-h+1)+1))}^{(-h+1)}}$

= $\underset{h\to 0}{\mathop{\lim }}\,{{(\ln (2-h))}^{(-h+1)}}$

Now, we can put h=0 in this above expression, we get,

= ln (2)

Hence, the correct answer is (c) ln (2).

Note: While solving questions related to one sided limits ($x\to {{0}^{+}}$ or $x\to {{0}^{-}}$), we substitute h in place of x (for $x\to {{0}^{+}}$) and (-h) [for $x\to {{0}^{-}}$] and then solve for h$\to $0. We try to solve the function inside the limits till we can successfully substitute h=0 (without getting an indeterminate form).

Recently Updated Pages

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Let x1x2xn be in an AP of x1 + x4 + x9 + x11 + x20-class-11-maths-CBSE

Let x1x2x3 and x4 be four nonzero real numbers satisfying class 11 maths CBSE

Trending doubts

How many crores make 10 million class 7 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write a letter to the principal requesting him to grant class 10 english CBSE

Give 10 examples of Material nouns Abstract nouns Common class 10 english CBSE

What are the public facilities provided by the government? Also explain each facility

Write an application to the principal requesting five class 10 english CBSE