Answer
Verified
390.9k+ views
Hint: Power is the rate of change of work done per unit time. When a bulb is connected with the battery it dissipates the electrical energy into light energy and heat So when we calculate the power it means how much energy dissipated by the bulb per second.
Complete step by step answer:
In this combination three electric bulbs have power ${{P}_{1}},{{P}_{2}}\And {{P}_{3}}$ where ${{P}_{1}}=200W$, ${{P}_{2}}=200W$, ${{P}_{3}}=400W$. In this arrangement ${{P}_{1}}$ and ${{P}_{2}}$ are connected in parallel but ${{P}_{3}}$ is connected in series with resultant of ${{P}_{1}}$ and ${{P}_{2}}$. We have to use the formula of power
$P=\dfrac{{{V}^{2}}}{R}$
Then, $R=\dfrac{{{V}^{2}}}{P}$
${{R}_{1}}=\dfrac{{{V}^{2}}}{{{P}_{1}}}$
$\Rightarrow {{R}_{2}}=\dfrac{{{V}^{2}}}{{{P}_{2}}}$
When the resistor connected in series then we have a formula of equivalent resistance
${{R}_{eq}}={{R}_{1}}+{{R}_{2}}$
Where, ${{R}_{1}}\And {{R}_{2}}$ is the resistance connected in series.
$\dfrac{{{V}^{2}}}{{{P}_{eq}}}=\dfrac{{{V}^{2}}}{{{P}_{1}}}+\dfrac{{{V}^{2}}}{{{P}_{2}}}$
Dividing both side by ${{V}^{2}}$, we get ${{P}_{eq}}$ of series combination
$\dfrac{1}{{{P}_{eq}}}=\dfrac{1}{{{P}_{1}}}+\dfrac{1}{{{P}_{2}}}$
When the resistor connected in parallel then then we have a formula of equivalent resistance
\[\dfrac{1}{{{R}_{eq}}}=\dfrac{1}{{{R}_{1}}}+\dfrac{1}{{{R}_{2}}}\]
Where, ${{R}_{1}}\And {{R}_{2}}$ is the resistance connected in parallel.
After putting the value of ${{R}_{1}}\And {{R}_{2}}$in above equation, we get
$\dfrac{{{P}_{eq}}}{{{V}^{2}}}=\dfrac{{{P}_{1}}}{{{V}^{2}}}+\dfrac{{{P}_{2}}}{{{V}^{2}}}$
After multiplying both side by ${{V}^{2}}$, we get ${{P}_{eq}}$ of parallel combination
\[{{P}_{eq}}={{P}_{1}}+{{P}_{2}}\]
In this problem power ${{P}_{1}}\And {{P}_{2}}$ are connected in parallel then resultant power of ${{P}_{1}}\And {{P}_{2}}$ is
${{P}_{eq}}={{P}_{1}}+{{P}_{2}}$
$\Rightarrow {{P}_{eq}}=200+200$
$\Rightarrow {{P}_{eq}}=400\,W$
But ${{P}_{3}}$ connected in series through ${{P}_{1}}\And {{P}_{2}}$ then resultant power of ${{P}_{1}},{{P}_{2}}\And {{P}_{3}}$
$\Rightarrow {{P}_{eq}}=\dfrac{1}{400}+\dfrac{1}{{{P}_{3}}}$
$\Rightarrow {{P}_{eq}}=\dfrac{1}{400}+\dfrac{1}{400}$
$\therefore {{P}_{eq}}=200\,W$
Hence, the resultant power of the combination is 200 W.
Hence, the correct answer is option C.
Note: Electric bulb converts the electrical energy into light energy and heat energy. In the series combination of resistor current is constant but in the case of parallel combination voltage is constant. Equivalent power means when we remove all three bulbs and connect a single bulb having the same resistance then power of a single bulb is equal to the equivalent power of three bulbs.
Complete step by step answer:
In this combination three electric bulbs have power ${{P}_{1}},{{P}_{2}}\And {{P}_{3}}$ where ${{P}_{1}}=200W$, ${{P}_{2}}=200W$, ${{P}_{3}}=400W$. In this arrangement ${{P}_{1}}$ and ${{P}_{2}}$ are connected in parallel but ${{P}_{3}}$ is connected in series with resultant of ${{P}_{1}}$ and ${{P}_{2}}$. We have to use the formula of power
$P=\dfrac{{{V}^{2}}}{R}$
Then, $R=\dfrac{{{V}^{2}}}{P}$
${{R}_{1}}=\dfrac{{{V}^{2}}}{{{P}_{1}}}$
$\Rightarrow {{R}_{2}}=\dfrac{{{V}^{2}}}{{{P}_{2}}}$
When the resistor connected in series then we have a formula of equivalent resistance
${{R}_{eq}}={{R}_{1}}+{{R}_{2}}$
Where, ${{R}_{1}}\And {{R}_{2}}$ is the resistance connected in series.
$\dfrac{{{V}^{2}}}{{{P}_{eq}}}=\dfrac{{{V}^{2}}}{{{P}_{1}}}+\dfrac{{{V}^{2}}}{{{P}_{2}}}$
Dividing both side by ${{V}^{2}}$, we get ${{P}_{eq}}$ of series combination
$\dfrac{1}{{{P}_{eq}}}=\dfrac{1}{{{P}_{1}}}+\dfrac{1}{{{P}_{2}}}$
When the resistor connected in parallel then then we have a formula of equivalent resistance
\[\dfrac{1}{{{R}_{eq}}}=\dfrac{1}{{{R}_{1}}}+\dfrac{1}{{{R}_{2}}}\]
Where, ${{R}_{1}}\And {{R}_{2}}$ is the resistance connected in parallel.
After putting the value of ${{R}_{1}}\And {{R}_{2}}$in above equation, we get
$\dfrac{{{P}_{eq}}}{{{V}^{2}}}=\dfrac{{{P}_{1}}}{{{V}^{2}}}+\dfrac{{{P}_{2}}}{{{V}^{2}}}$
After multiplying both side by ${{V}^{2}}$, we get ${{P}_{eq}}$ of parallel combination
\[{{P}_{eq}}={{P}_{1}}+{{P}_{2}}\]
In this problem power ${{P}_{1}}\And {{P}_{2}}$ are connected in parallel then resultant power of ${{P}_{1}}\And {{P}_{2}}$ is
${{P}_{eq}}={{P}_{1}}+{{P}_{2}}$
$\Rightarrow {{P}_{eq}}=200+200$
$\Rightarrow {{P}_{eq}}=400\,W$
But ${{P}_{3}}$ connected in series through ${{P}_{1}}\And {{P}_{2}}$ then resultant power of ${{P}_{1}},{{P}_{2}}\And {{P}_{3}}$
$\Rightarrow {{P}_{eq}}=\dfrac{1}{400}+\dfrac{1}{{{P}_{3}}}$
$\Rightarrow {{P}_{eq}}=\dfrac{1}{400}+\dfrac{1}{400}$
$\therefore {{P}_{eq}}=200\,W$
Hence, the resultant power of the combination is 200 W.
Hence, the correct answer is option C.
Note: Electric bulb converts the electrical energy into light energy and heat energy. In the series combination of resistor current is constant but in the case of parallel combination voltage is constant. Equivalent power means when we remove all three bulbs and connect a single bulb having the same resistance then power of a single bulb is equal to the equivalent power of three bulbs.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it