
The volume of the cubical tank is $125000{m^3}$. Find the length of its sides.
Answer
621.6k+ views
Hint: Volume is measured in "cubic" units. The volume of a figure is the number of cubes required to fill it completely, like blocks in a box. Volume of a cube = side times side times side. Since each side of a square is the same, it can simply be the length of one side cube.
Complete step-by-step answer:
Volume of the tank is given to us and we know that the volume of the cubical tank will be cube of a length which in this case is unknown.
Therefore, let us consider a variable whose cube is $125000{m^3}$
Therefore,
${a^3} = 125000{m^3}$
To find the value of the length we have to solve the above equation,
Therefore,
$a = {125000^{\frac{1}{3}}}$
We can write the value of $125000$ as multiples of cubes.
Therefore,
$a = {\left( {125 \times 1000} \right)^{\frac{1}{3}}}$
$a = {\left( {{5^3} \times {{10}^3}} \right)^{\frac{1}{3}}}$
If we open the brackets, using the formula ${\left( {{a^m} \times {b^m}} \right)^{\frac{1}{m}}} = \left( {a \times b} \right)$
Therefore, on using the above formula, it becomes,
$a = 5 \times 10$
$a = 50$
Note: Make sure that you write the units.
Therefore, the lengths of the sides of the cubical tank are 50m each.
Complete step-by-step answer:
Volume of the tank is given to us and we know that the volume of the cubical tank will be cube of a length which in this case is unknown.
Therefore, let us consider a variable whose cube is $125000{m^3}$
Therefore,
${a^3} = 125000{m^3}$
To find the value of the length we have to solve the above equation,
Therefore,
$a = {125000^{\frac{1}{3}}}$
We can write the value of $125000$ as multiples of cubes.
Therefore,
$a = {\left( {125 \times 1000} \right)^{\frac{1}{3}}}$
$a = {\left( {{5^3} \times {{10}^3}} \right)^{\frac{1}{3}}}$
If we open the brackets, using the formula ${\left( {{a^m} \times {b^m}} \right)^{\frac{1}{m}}} = \left( {a \times b} \right)$
Therefore, on using the above formula, it becomes,
$a = 5 \times 10$
$a = 50$
Note: Make sure that you write the units.
Therefore, the lengths of the sides of the cubical tank are 50m each.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

