
The volume of the cubical tank is $125000{m^3}$. Find the length of its sides.
Answer
594.6k+ views
Hint: Volume is measured in "cubic" units. The volume of a figure is the number of cubes required to fill it completely, like blocks in a box. Volume of a cube = side times side times side. Since each side of a square is the same, it can simply be the length of one side cube.
Complete step-by-step answer:
Volume of the tank is given to us and we know that the volume of the cubical tank will be cube of a length which in this case is unknown.
Therefore, let us consider a variable whose cube is $125000{m^3}$
Therefore,
${a^3} = 125000{m^3}$
To find the value of the length we have to solve the above equation,
Therefore,
$a = {125000^{\frac{1}{3}}}$
We can write the value of $125000$ as multiples of cubes.
Therefore,
$a = {\left( {125 \times 1000} \right)^{\frac{1}{3}}}$
$a = {\left( {{5^3} \times {{10}^3}} \right)^{\frac{1}{3}}}$
If we open the brackets, using the formula ${\left( {{a^m} \times {b^m}} \right)^{\frac{1}{m}}} = \left( {a \times b} \right)$
Therefore, on using the above formula, it becomes,
$a = 5 \times 10$
$a = 50$
Note: Make sure that you write the units.
Therefore, the lengths of the sides of the cubical tank are 50m each.
Complete step-by-step answer:
Volume of the tank is given to us and we know that the volume of the cubical tank will be cube of a length which in this case is unknown.
Therefore, let us consider a variable whose cube is $125000{m^3}$
Therefore,
${a^3} = 125000{m^3}$
To find the value of the length we have to solve the above equation,
Therefore,
$a = {125000^{\frac{1}{3}}}$
We can write the value of $125000$ as multiples of cubes.
Therefore,
$a = {\left( {125 \times 1000} \right)^{\frac{1}{3}}}$
$a = {\left( {{5^3} \times {{10}^3}} \right)^{\frac{1}{3}}}$
If we open the brackets, using the formula ${\left( {{a^m} \times {b^m}} \right)^{\frac{1}{m}}} = \left( {a \times b} \right)$
Therefore, on using the above formula, it becomes,
$a = 5 \times 10$
$a = 50$
Note: Make sure that you write the units.
Therefore, the lengths of the sides of the cubical tank are 50m each.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

