
The volume of the cubical tank is $125000{m^3}$. Find the length of its sides.
Answer
602.4k+ views
Hint: Volume is measured in "cubic" units. The volume of a figure is the number of cubes required to fill it completely, like blocks in a box. Volume of a cube = side times side times side. Since each side of a square is the same, it can simply be the length of one side cube.
Complete step-by-step answer:
Volume of the tank is given to us and we know that the volume of the cubical tank will be cube of a length which in this case is unknown.
Therefore, let us consider a variable whose cube is $125000{m^3}$
Therefore,
${a^3} = 125000{m^3}$
To find the value of the length we have to solve the above equation,
Therefore,
$a = {125000^{\frac{1}{3}}}$
We can write the value of $125000$ as multiples of cubes.
Therefore,
$a = {\left( {125 \times 1000} \right)^{\frac{1}{3}}}$
$a = {\left( {{5^3} \times {{10}^3}} \right)^{\frac{1}{3}}}$
If we open the brackets, using the formula ${\left( {{a^m} \times {b^m}} \right)^{\frac{1}{m}}} = \left( {a \times b} \right)$
Therefore, on using the above formula, it becomes,
$a = 5 \times 10$
$a = 50$
Note: Make sure that you write the units.
Therefore, the lengths of the sides of the cubical tank are 50m each.
Complete step-by-step answer:
Volume of the tank is given to us and we know that the volume of the cubical tank will be cube of a length which in this case is unknown.
Therefore, let us consider a variable whose cube is $125000{m^3}$
Therefore,
${a^3} = 125000{m^3}$
To find the value of the length we have to solve the above equation,
Therefore,
$a = {125000^{\frac{1}{3}}}$
We can write the value of $125000$ as multiples of cubes.
Therefore,
$a = {\left( {125 \times 1000} \right)^{\frac{1}{3}}}$
$a = {\left( {{5^3} \times {{10}^3}} \right)^{\frac{1}{3}}}$
If we open the brackets, using the formula ${\left( {{a^m} \times {b^m}} \right)^{\frac{1}{m}}} = \left( {a \times b} \right)$
Therefore, on using the above formula, it becomes,
$a = 5 \times 10$
$a = 50$
Note: Make sure that you write the units.
Therefore, the lengths of the sides of the cubical tank are 50m each.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

Who Won 36 Oscar Awards? Record Holder Revealed

