The value of the trigonometric function \[\dfrac{2\cos {{40}^{\circ }}-\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}\] is
Last updated date: 20th Mar 2023
•
Total views: 304.5k
•
Views today: 3.82k
Answer
304.5k+ views
Hint:Simplify the numerator of the given expression and use the trigonometric formulae like\[\left( \cos A-\cos B \right)\] and \[\left( \operatorname{sinA}-\sin B \right)\] to solve the expression in numerator.
Complete step by step answer:
We are given the expression\[\dfrac{2\cos {{40}^{\circ }}-\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}\].
Let us first solve the numerator\[\left( 2\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \right)\].
The numerator can also be written as,
\[\begin{align}
& \cos {{40}^{\circ }}+\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \\
& \Rightarrow \cos {{40}^{\circ }}+\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \\
& \Rightarrow \cos {{40}^{\circ }}+\left( \cos {{40}^{\circ }}-\cos {{20}^{\circ }} \right) \\
& \Rightarrow \cos {{40}^{\circ }}-\left( \cos {{20}^{\circ }}-cos{{40}^{\circ }} \right)......(1) \\
\end{align}\]
Taking negative sign common from brackets,
We know the formula,
\[\begin{align}
& \cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
& \cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right) \\
\end{align}\]
Let us put\[A={{20}^{\circ }}\]and\[B={{40}^{\circ }}\].
\[\begin{align}
& \therefore \cos {{20}^{\circ }}-\cos {{40}^{\circ }}=2\sin \left( \dfrac{20+40}{2} \right)\sin \left( \dfrac{40-20}{2} \right) \\
& \Rightarrow 2\sin \left( \dfrac{60}{2} \right)\sin \left( \dfrac{20}{2} \right)=2\sin {{30}^{\circ }}\sin {{10}^{\circ }} \\
\end{align}\]
Substituting value of\[\left( \cos {{20}^{\circ }}-\cos {{40}^{\circ }} \right)\]in equation (1),
\[\Rightarrow \cos {{40}^{\circ }}-2\sin {{30}^{\circ }}\sin {{10}^{\circ }}........(2)\]
We know the value of\[\sin {{30}^{\circ }}={}^{1}/{}_{2}\]from the trigonometric table.
\[\therefore 2\sin {{30}^{\circ }}=1\], substitute it in equation (2).
\[\therefore \cos {{40}^{\circ }}-\sin {{10}^{\circ }}\]
By putting its denominator and substituting\[\left( \cos {{40}^{\circ }}-\sin {{10}^{\circ }} \right)\] in place of\[\left( 2\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \right)\],
\[\Rightarrow \dfrac{\cos {{40}^{\circ }}-\sin {{10}^{\circ }}}{\sin {{20}^{\circ }}}......(3)\]
Let us take the cosine function of\[\cos {{40}^{\circ }}\], [we know 90-50=40]
\[\cos \left( 90-\theta \right)=\sin {{\theta }^{\circ }}\]
\[\therefore \]Put\[\theta ={{50}^{\circ }}\].
\[\therefore \cos \left( 90-50 \right)=\sin {{50}^{\circ }}\]
\[\therefore \]Equation (3) becomes\[\dfrac{\sin {{50}^{\circ }}-\sin {{10}^{\circ }}}{\sin {{20}^{\circ }}}\].
We know the formula for\[sinA-sinB=2cos\left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\].
Let us put\[A={{50}^{\circ }}\]and\[B={{10}^{\circ }}\].
\[\begin{align}
& \sin {{50}^{\circ }}-\sin {{10}^{\circ }}=2\cos \left( \dfrac{50+10}{2} \right)\sin \left( \dfrac{50-10}{2} \right) \\
& \Rightarrow 2\cos \dfrac{60}{2}\sin \dfrac{40}{2} \\
& \Rightarrow 2\cos 30\sin 20 \\
& \therefore \dfrac{\sin {{50}^{\circ }}-\sin {{10}^{\circ }}}{\sin {{20}^{\circ }}}=\dfrac{2\cos {{30}^{\circ }}\sin {{20}^{\circ }}}{\sin {{20}^{\circ }}} \\
\end{align}\]
Cancel out the like term\[\left( \sin {{20}^{\circ }} \right)\]from the numerator and denominator.
Hence, we get\[2\cos {{30}^{\circ }}.\]
We know the value of\[\cos {{30}^{\circ }}={}^{\sqrt{3}}/{}_{2}\].
Therefore, the expression =\[2\cos {{30}^{\circ }}=2\times \dfrac{\sqrt{3}}{2}=\sqrt{3}\]
Hence the value of\[\dfrac{2\cos {{40}^{\circ }}-\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}=\sqrt{3}.\]
Note:
To solve problems like these you should remember the trigonometric identities of sine and cosine functions along with the trigonometric table. In this expression, most are substitution of the formulae of sine and cosine functions and their simplification. Therefore be thorough with the formulae.
Complete step by step answer:
We are given the expression\[\dfrac{2\cos {{40}^{\circ }}-\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}\].
Let us first solve the numerator\[\left( 2\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \right)\].
The numerator can also be written as,
\[\begin{align}
& \cos {{40}^{\circ }}+\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \\
& \Rightarrow \cos {{40}^{\circ }}+\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \\
& \Rightarrow \cos {{40}^{\circ }}+\left( \cos {{40}^{\circ }}-\cos {{20}^{\circ }} \right) \\
& \Rightarrow \cos {{40}^{\circ }}-\left( \cos {{20}^{\circ }}-cos{{40}^{\circ }} \right)......(1) \\
\end{align}\]
Taking negative sign common from brackets,
We know the formula,
\[\begin{align}
& \cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
& \cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right) \\
\end{align}\]
Let us put\[A={{20}^{\circ }}\]and\[B={{40}^{\circ }}\].
\[\begin{align}
& \therefore \cos {{20}^{\circ }}-\cos {{40}^{\circ }}=2\sin \left( \dfrac{20+40}{2} \right)\sin \left( \dfrac{40-20}{2} \right) \\
& \Rightarrow 2\sin \left( \dfrac{60}{2} \right)\sin \left( \dfrac{20}{2} \right)=2\sin {{30}^{\circ }}\sin {{10}^{\circ }} \\
\end{align}\]
Substituting value of\[\left( \cos {{20}^{\circ }}-\cos {{40}^{\circ }} \right)\]in equation (1),
\[\Rightarrow \cos {{40}^{\circ }}-2\sin {{30}^{\circ }}\sin {{10}^{\circ }}........(2)\]
We know the value of\[\sin {{30}^{\circ }}={}^{1}/{}_{2}\]from the trigonometric table.
\[\therefore 2\sin {{30}^{\circ }}=1\], substitute it in equation (2).
\[\therefore \cos {{40}^{\circ }}-\sin {{10}^{\circ }}\]
By putting its denominator and substituting\[\left( \cos {{40}^{\circ }}-\sin {{10}^{\circ }} \right)\] in place of\[\left( 2\cos {{40}^{\circ }}-\cos {{20}^{\circ }} \right)\],
\[\Rightarrow \dfrac{\cos {{40}^{\circ }}-\sin {{10}^{\circ }}}{\sin {{20}^{\circ }}}......(3)\]
Let us take the cosine function of\[\cos {{40}^{\circ }}\], [we know 90-50=40]
\[\cos \left( 90-\theta \right)=\sin {{\theta }^{\circ }}\]
\[\therefore \]Put\[\theta ={{50}^{\circ }}\].
\[\therefore \cos \left( 90-50 \right)=\sin {{50}^{\circ }}\]
\[\therefore \]Equation (3) becomes\[\dfrac{\sin {{50}^{\circ }}-\sin {{10}^{\circ }}}{\sin {{20}^{\circ }}}\].
We know the formula for\[sinA-sinB=2cos\left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\].
Let us put\[A={{50}^{\circ }}\]and\[B={{10}^{\circ }}\].
\[\begin{align}
& \sin {{50}^{\circ }}-\sin {{10}^{\circ }}=2\cos \left( \dfrac{50+10}{2} \right)\sin \left( \dfrac{50-10}{2} \right) \\
& \Rightarrow 2\cos \dfrac{60}{2}\sin \dfrac{40}{2} \\
& \Rightarrow 2\cos 30\sin 20 \\
& \therefore \dfrac{\sin {{50}^{\circ }}-\sin {{10}^{\circ }}}{\sin {{20}^{\circ }}}=\dfrac{2\cos {{30}^{\circ }}\sin {{20}^{\circ }}}{\sin {{20}^{\circ }}} \\
\end{align}\]
Cancel out the like term\[\left( \sin {{20}^{\circ }} \right)\]from the numerator and denominator.
Hence, we get\[2\cos {{30}^{\circ }}.\]
We know the value of\[\cos {{30}^{\circ }}={}^{\sqrt{3}}/{}_{2}\].
Therefore, the expression =\[2\cos {{30}^{\circ }}=2\times \dfrac{\sqrt{3}}{2}=\sqrt{3}\]
Hence the value of\[\dfrac{2\cos {{40}^{\circ }}-\cos {{20}^{\circ }}}{\sin {{20}^{\circ }}}=\sqrt{3}.\]
Note:
To solve problems like these you should remember the trigonometric identities of sine and cosine functions along with the trigonometric table. In this expression, most are substitution of the formulae of sine and cosine functions and their simplification. Therefore be thorough with the formulae.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
