# The value of the expression $1.\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2.\left( {3 - \omega } \right)\left( {3 - {\omega ^2}} \right) + ............. + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right)$ where $\omega $ is an cube root of unity is

$

(a){\text{ }}{\left\{ {\dfrac{{n(n + 1)}}{2}} \right\}^2} \\

(a){\text{ }}{\left\{ {\dfrac{{n(n + 1)}}{2}} \right\}^2} - {\text{n}} \\

(a){\text{ }}{\left\{ {\dfrac{{n(n + 1)}}{2}} \right\}^2} + {\text{n}} \\

(a){\text{ None of the above}} \\

$

Answer

Verified

362.7k+ views

Hint: In this problem we have to evaluate the given expression and it has been given that $\omega $ is the cube root of units. Let’s understand what does a cube root of unity means the solution of ${\left( 1 \right)^{\dfrac{1}{3}}} = \left( {1,\omega ,{\omega ^2}} \right)$, thus $\omega $ is known as cube root of unit. Use the various properties of cube root of unity like $\left( {1 + \omega + {\omega ^2} = 0} \right){\text{ & }}\left( {{\omega ^3} = 1} \right)$ along with the formula for sum of squares of first n natural numbers to get the answer.

Complete step-by-step answer:

Given expression is

$1.\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2.\left( {3 - \omega } \right)\left( {3 - {\omega ^2}} \right) + ............. + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right)$

Now it is given that $\omega $ is an imaginary cube root of unity

Therefore $\left( {1 + \omega + {\omega ^2} = 0} \right){\text{ & }}\left( {{\omega ^3} = 1} \right)$

Now the first term of the series is

$1.\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right)$

Now simplify it we have,

$1.\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) = 4 - 2{\omega ^2} - 2\omega + {\omega ^3} = 4 - 2\left( {\omega + {\omega ^2}} \right) + {\omega ^3}$

Now substitute the value of $\left( {\omega + {\omega ^2}} \right)$ which is -1 and the value of ${\omega ^3}$ which is 1.

$ \Rightarrow 1.\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) = 4 - 2\left( { - 1} \right) + 1 = 7$

$ \Rightarrow 1.\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) = {2^3} - 1$

Now the second term of the series is $2.\left( {3 - \omega } \right)\left( {3 - {\omega ^2}} \right)$

Now simplify it we have,

$ \Rightarrow 2.\left( {3 - \omega } \right)\left( {3 - {\omega ^2}} \right) = 2\left( {9 - 3{\omega ^2} - 3\omega + {\omega ^3}} \right) = 2\left( {9 - 3\left( { - 1} \right) + 1} \right) = 2\left( {13} \right) = 26$

$ \Rightarrow 2.\left( {3 - \omega } \right)\left( {3 - {\omega ^2}} \right) = {3^3} - 1$

Similarly ${n^{th}}$ term of the series is $\left( {{n^3} - 1} \right)$

So, the series converted into

$\left( {{2^3} - 1} \right) + \left( {{3^3} - 1} \right) + .................. + \left( {{n^3} - 1} \right)$

Now the sum of this series is

${S_n} = \sum\limits_{r = 1}^n {\left( {{r^3} - 1} \right)} $

$ \Rightarrow {S_n} = \sum\limits_{r = 1}^n {{r^3} - } \sum\limits_{r = 1}^n 1 $

Now as we know summation of $\sum\limits_{r = 1}^n {{r^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}$ and $\sum\limits_{r = 1}^n 1 = n$

So substitute these values in above equation we have,

$ \Rightarrow {S_n} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} - n$

So this is the required answer.

Hence, option (b) is correct.

Note: Whenever we face such types of problems involving cube root of unity the key point is to have a good grasp over the formula involving cube root of unity, some of which are mentioned above. The basic understanding about the definition of the cube root of unity along with formula implementation after simplification will help you get on the right track to reach the answer.

Complete step-by-step answer:

Given expression is

$1.\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2.\left( {3 - \omega } \right)\left( {3 - {\omega ^2}} \right) + ............. + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right)$

Now it is given that $\omega $ is an imaginary cube root of unity

Therefore $\left( {1 + \omega + {\omega ^2} = 0} \right){\text{ & }}\left( {{\omega ^3} = 1} \right)$

Now the first term of the series is

$1.\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right)$

Now simplify it we have,

$1.\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) = 4 - 2{\omega ^2} - 2\omega + {\omega ^3} = 4 - 2\left( {\omega + {\omega ^2}} \right) + {\omega ^3}$

Now substitute the value of $\left( {\omega + {\omega ^2}} \right)$ which is -1 and the value of ${\omega ^3}$ which is 1.

$ \Rightarrow 1.\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) = 4 - 2\left( { - 1} \right) + 1 = 7$

$ \Rightarrow 1.\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) = {2^3} - 1$

Now the second term of the series is $2.\left( {3 - \omega } \right)\left( {3 - {\omega ^2}} \right)$

Now simplify it we have,

$ \Rightarrow 2.\left( {3 - \omega } \right)\left( {3 - {\omega ^2}} \right) = 2\left( {9 - 3{\omega ^2} - 3\omega + {\omega ^3}} \right) = 2\left( {9 - 3\left( { - 1} \right) + 1} \right) = 2\left( {13} \right) = 26$

$ \Rightarrow 2.\left( {3 - \omega } \right)\left( {3 - {\omega ^2}} \right) = {3^3} - 1$

Similarly ${n^{th}}$ term of the series is $\left( {{n^3} - 1} \right)$

So, the series converted into

$\left( {{2^3} - 1} \right) + \left( {{3^3} - 1} \right) + .................. + \left( {{n^3} - 1} \right)$

Now the sum of this series is

${S_n} = \sum\limits_{r = 1}^n {\left( {{r^3} - 1} \right)} $

$ \Rightarrow {S_n} = \sum\limits_{r = 1}^n {{r^3} - } \sum\limits_{r = 1}^n 1 $

Now as we know summation of $\sum\limits_{r = 1}^n {{r^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}$ and $\sum\limits_{r = 1}^n 1 = n$

So substitute these values in above equation we have,

$ \Rightarrow {S_n} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} - n$

So this is the required answer.

Hence, option (b) is correct.

Note: Whenever we face such types of problems involving cube root of unity the key point is to have a good grasp over the formula involving cube root of unity, some of which are mentioned above. The basic understanding about the definition of the cube root of unity along with formula implementation after simplification will help you get on the right track to reach the answer.

Last updated date: 30th Sep 2023

•

Total views: 362.7k

•

Views today: 6.62k

Recently Updated Pages

What do you mean by public facilities

Slogan on Noise Pollution

Paragraph on Friendship

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

What is the Full Form of ILO, UNICEF and UNESCO

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Why are resources distributed unequally over the e class 7 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE

What is the past tense of read class 10 english CBSE