
The value of ${\sin ^{ - 1}}(\sin 12) + {\cos ^{ - 1}}(\cos 12)$ is equal to
A) Zero
B) $24 - 2\pi $
C) $4\pi - 24$
D) None of these
Answer
579k+ views
Hint: Convert the given angles of the inverse trigonometric functions so that their value lies in their domain and range and then substitute these values into the given expression. After the simplification, we have the result required in the given problem.
Complete step-by-step answer:
Consider the given expression in the problem:
${\sin ^{ - 1}}(\sin 12) + {\cos ^{ - 1}}(\cos 12)$
We have to find the value of the given trigonometric expression.
We know that the principal value of the inverse of sine angle is given as:
\[{\sin ^{ - 1}} \in \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]\], where the value of $x$ are \[x \in \left[ { - 1,1} \right]\].
Similarly, we know that the principal value of inverse of the cosine angle is given as:
${\cos ^{ - 1}}y \in \left[ {0,\pi } \right]$, where the value of $x$ are $y \in \left[ { - 1,1} \right]$
Now, in the term given to us is
${\sin ^{ - 1}}(\sin 12) \ne 12$, where $12 \notin \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$
Similarly,${\cos ^{ - 1}}(\cos 12) \ne 12$, where$12 \notin \left[ {0,\pi } \right]$
Therefore, we can rewrite the given expression as:
${\sin ^{ - 1}}\left( {\sin 12} \right) = {\sin ^{ - 1}}\left( {\sin \left( {12 - 4\pi } \right)} \right)$
Let us rewrite the given function by changing the angles.
${\sin ^{ - 1}}(\sin 12) + {\cos ^{ - 1}}(\cos 12) = {\sin ^{ - 1}}\left( {\sin \left( {12 - 4\pi } \right)} \right) + {\cos ^{ - 1}}\left( {\cos \left( {4\pi - 12} \right)} \right)$
Then this obtained expression can be given as:
\[{\sin ^{ - 1}}(\sin 12) + {\cos ^{ - 1}}(\cos 12) = (12 - 4\pi ) + (4\pi - 12)\]
Usual formulas in the above expression as:
$\sin (2n\pi - x) = - \sin (x);$
$\sin ( - x) = - \sin x$
\[{\sin ^{ - 1}}(\sin 12) + {\cos ^{ - 1}}(\cos 12) = 0\]
So, we have the conclusion that:
\[{\sin ^{ - 1}}(\sin 12) + {\cos ^{ - 1}}(\cos 12) = 0\]
Therefore, the option (a) is correct.
Note: The domain of the function consists of all possible values of the independent variable where the function is defined and the range is the set which is obtained by the substitution of all values of the domain into the function.
The principal value of the inverse trigonometric function is the least absolute value of the angle.
Complete step-by-step answer:
Consider the given expression in the problem:
${\sin ^{ - 1}}(\sin 12) + {\cos ^{ - 1}}(\cos 12)$
We have to find the value of the given trigonometric expression.
We know that the principal value of the inverse of sine angle is given as:
\[{\sin ^{ - 1}} \in \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]\], where the value of $x$ are \[x \in \left[ { - 1,1} \right]\].
Similarly, we know that the principal value of inverse of the cosine angle is given as:
${\cos ^{ - 1}}y \in \left[ {0,\pi } \right]$, where the value of $x$ are $y \in \left[ { - 1,1} \right]$
Now, in the term given to us is
${\sin ^{ - 1}}(\sin 12) \ne 12$, where $12 \notin \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$
Similarly,${\cos ^{ - 1}}(\cos 12) \ne 12$, where$12 \notin \left[ {0,\pi } \right]$
Therefore, we can rewrite the given expression as:
${\sin ^{ - 1}}\left( {\sin 12} \right) = {\sin ^{ - 1}}\left( {\sin \left( {12 - 4\pi } \right)} \right)$
Let us rewrite the given function by changing the angles.
${\sin ^{ - 1}}(\sin 12) + {\cos ^{ - 1}}(\cos 12) = {\sin ^{ - 1}}\left( {\sin \left( {12 - 4\pi } \right)} \right) + {\cos ^{ - 1}}\left( {\cos \left( {4\pi - 12} \right)} \right)$
Then this obtained expression can be given as:
\[{\sin ^{ - 1}}(\sin 12) + {\cos ^{ - 1}}(\cos 12) = (12 - 4\pi ) + (4\pi - 12)\]
Usual formulas in the above expression as:
$\sin (2n\pi - x) = - \sin (x);$
$\sin ( - x) = - \sin x$
\[{\sin ^{ - 1}}(\sin 12) + {\cos ^{ - 1}}(\cos 12) = 0\]
So, we have the conclusion that:
\[{\sin ^{ - 1}}(\sin 12) + {\cos ^{ - 1}}(\cos 12) = 0\]
Therefore, the option (a) is correct.
Note: The domain of the function consists of all possible values of the independent variable where the function is defined and the range is the set which is obtained by the substitution of all values of the domain into the function.
The principal value of the inverse trigonometric function is the least absolute value of the angle.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

