Answer
Verified
494.1k+ views
Hint- For these type of questions, apply L'Hospital's rule and solve it because we will get this in $\dfrac{\infty }{\infty }$ form
Complete step-by-step answer:
We have to find out the value of \[{\lim _{x \to 0}}{x^m}{(\ln x)^n}\]
=\[{\lim _{x \to 0}}\dfrac{{{{(\ln x)}^n}}}{{{x^{ - m}}}}\]
If we directly apply the value of limits and try to solve this, we will get in $\dfrac{\infty }{\infty }$ form,
This form is undefined, So let us apply L'Hospital's rule and solve this question
On applying L'Hospital's rule, let us differentiate both the numerator and denominator with respect to x, So, we get
Derivative of ${x^n} = n{x^{n - 1}}$ and the derivative of lnx=$\dfrac{1}{x}$
So, let us apply these derivatives in the numerator and denominator
So, we get ${\lim _{x \to {0^ + }}}\dfrac{{n{{(\ln x)}^{n - 1}}\dfrac{1}{x}}}{{ - m{x^{ - m - 1}}}}$
$ = {\lim _{x \to {0^ + }}}\dfrac{{n{{(\ln x)}^{n - 1}}}}{{ - m{x^{ - m}}}}$
Now if we apply the limits, again this will be of the form $\dfrac{\infty }{\infty }$
So, again apply L Hospital’s rule and differentiate both the numerator and denominator
${\lim _{x \to {0^ + }}}\dfrac{{n(n - 1){{(\ln x)}^{n - 2}}\dfrac{1}{x}}}{{{{( - m)}^2}{x^{ - m - 1}}}}$
=${\lim _{x \to {0^ + }}}\dfrac{{n(n - 1){{(\ln x)}^{n - 2}}}}{{{{( - m)}^2}{x^{ - m}}}}$
Now, if we apply the limits again this will be in an undefined form,
So, let u differentiate both the numerator and denominator n times with respect to x
So, we get
${\lim _{x \to {0^ + }}}\dfrac{{n!}}{{{{( - m)}^n}{x^{ - m}}}} = 0$
So, the value of the limit \[{\lim _{x \to 0}}{x^m}{(\ln x)^n}\]=0
So, option A is the correct answer for this question
Note: In case on applying the value of the limits directly in the equation , if we don’t get in the form $\dfrac{0}{0}$ or \[\dfrac{\infty }{\infty }\] , then we need not apply the L Hospital’s rule we can substitute the value of the limits directly and solve it
Complete step-by-step answer:
We have to find out the value of \[{\lim _{x \to 0}}{x^m}{(\ln x)^n}\]
=\[{\lim _{x \to 0}}\dfrac{{{{(\ln x)}^n}}}{{{x^{ - m}}}}\]
If we directly apply the value of limits and try to solve this, we will get in $\dfrac{\infty }{\infty }$ form,
This form is undefined, So let us apply L'Hospital's rule and solve this question
On applying L'Hospital's rule, let us differentiate both the numerator and denominator with respect to x, So, we get
Derivative of ${x^n} = n{x^{n - 1}}$ and the derivative of lnx=$\dfrac{1}{x}$
So, let us apply these derivatives in the numerator and denominator
So, we get ${\lim _{x \to {0^ + }}}\dfrac{{n{{(\ln x)}^{n - 1}}\dfrac{1}{x}}}{{ - m{x^{ - m - 1}}}}$
$ = {\lim _{x \to {0^ + }}}\dfrac{{n{{(\ln x)}^{n - 1}}}}{{ - m{x^{ - m}}}}$
Now if we apply the limits, again this will be of the form $\dfrac{\infty }{\infty }$
So, again apply L Hospital’s rule and differentiate both the numerator and denominator
${\lim _{x \to {0^ + }}}\dfrac{{n(n - 1){{(\ln x)}^{n - 2}}\dfrac{1}{x}}}{{{{( - m)}^2}{x^{ - m - 1}}}}$
=${\lim _{x \to {0^ + }}}\dfrac{{n(n - 1){{(\ln x)}^{n - 2}}}}{{{{( - m)}^2}{x^{ - m}}}}$
Now, if we apply the limits again this will be in an undefined form,
So, let u differentiate both the numerator and denominator n times with respect to x
So, we get
${\lim _{x \to {0^ + }}}\dfrac{{n!}}{{{{( - m)}^n}{x^{ - m}}}} = 0$
So, the value of the limit \[{\lim _{x \to 0}}{x^m}{(\ln x)^n}\]=0
So, option A is the correct answer for this question
Note: In case on applying the value of the limits directly in the equation , if we don’t get in the form $\dfrac{0}{0}$ or \[\dfrac{\infty }{\infty }\] , then we need not apply the L Hospital’s rule we can substitute the value of the limits directly and solve it
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE