
The value of ${\lim _{x \to 0}}{x^m}{(\ln x)^n},m,n \in N$ is
A. 0
B. $\dfrac{m}{n}$
C. mn
D. none of these
Answer
607.8k+ views
Hint- For these type of questions, apply L'Hospital's rule and solve it because we will get this in $\dfrac{\infty }{\infty }$ form
Complete step-by-step answer:
We have to find out the value of \[{\lim _{x \to 0}}{x^m}{(\ln x)^n}\]
=\[{\lim _{x \to 0}}\dfrac{{{{(\ln x)}^n}}}{{{x^{ - m}}}}\]
If we directly apply the value of limits and try to solve this, we will get in $\dfrac{\infty }{\infty }$ form,
This form is undefined, So let us apply L'Hospital's rule and solve this question
On applying L'Hospital's rule, let us differentiate both the numerator and denominator with respect to x, So, we get
Derivative of ${x^n} = n{x^{n - 1}}$ and the derivative of lnx=$\dfrac{1}{x}$
So, let us apply these derivatives in the numerator and denominator
So, we get ${\lim _{x \to {0^ + }}}\dfrac{{n{{(\ln x)}^{n - 1}}\dfrac{1}{x}}}{{ - m{x^{ - m - 1}}}}$
$ = {\lim _{x \to {0^ + }}}\dfrac{{n{{(\ln x)}^{n - 1}}}}{{ - m{x^{ - m}}}}$
Now if we apply the limits, again this will be of the form $\dfrac{\infty }{\infty }$
So, again apply L Hospital’s rule and differentiate both the numerator and denominator
${\lim _{x \to {0^ + }}}\dfrac{{n(n - 1){{(\ln x)}^{n - 2}}\dfrac{1}{x}}}{{{{( - m)}^2}{x^{ - m - 1}}}}$
=${\lim _{x \to {0^ + }}}\dfrac{{n(n - 1){{(\ln x)}^{n - 2}}}}{{{{( - m)}^2}{x^{ - m}}}}$
Now, if we apply the limits again this will be in an undefined form,
So, let u differentiate both the numerator and denominator n times with respect to x
So, we get
${\lim _{x \to {0^ + }}}\dfrac{{n!}}{{{{( - m)}^n}{x^{ - m}}}} = 0$
So, the value of the limit \[{\lim _{x \to 0}}{x^m}{(\ln x)^n}\]=0
So, option A is the correct answer for this question
Note: In case on applying the value of the limits directly in the equation , if we don’t get in the form $\dfrac{0}{0}$ or \[\dfrac{\infty }{\infty }\] , then we need not apply the L Hospital’s rule we can substitute the value of the limits directly and solve it
Complete step-by-step answer:
We have to find out the value of \[{\lim _{x \to 0}}{x^m}{(\ln x)^n}\]
=\[{\lim _{x \to 0}}\dfrac{{{{(\ln x)}^n}}}{{{x^{ - m}}}}\]
If we directly apply the value of limits and try to solve this, we will get in $\dfrac{\infty }{\infty }$ form,
This form is undefined, So let us apply L'Hospital's rule and solve this question
On applying L'Hospital's rule, let us differentiate both the numerator and denominator with respect to x, So, we get
Derivative of ${x^n} = n{x^{n - 1}}$ and the derivative of lnx=$\dfrac{1}{x}$
So, let us apply these derivatives in the numerator and denominator
So, we get ${\lim _{x \to {0^ + }}}\dfrac{{n{{(\ln x)}^{n - 1}}\dfrac{1}{x}}}{{ - m{x^{ - m - 1}}}}$
$ = {\lim _{x \to {0^ + }}}\dfrac{{n{{(\ln x)}^{n - 1}}}}{{ - m{x^{ - m}}}}$
Now if we apply the limits, again this will be of the form $\dfrac{\infty }{\infty }$
So, again apply L Hospital’s rule and differentiate both the numerator and denominator
${\lim _{x \to {0^ + }}}\dfrac{{n(n - 1){{(\ln x)}^{n - 2}}\dfrac{1}{x}}}{{{{( - m)}^2}{x^{ - m - 1}}}}$
=${\lim _{x \to {0^ + }}}\dfrac{{n(n - 1){{(\ln x)}^{n - 2}}}}{{{{( - m)}^2}{x^{ - m}}}}$
Now, if we apply the limits again this will be in an undefined form,
So, let u differentiate both the numerator and denominator n times with respect to x
So, we get
${\lim _{x \to {0^ + }}}\dfrac{{n!}}{{{{( - m)}^n}{x^{ - m}}}} = 0$
So, the value of the limit \[{\lim _{x \to 0}}{x^m}{(\ln x)^n}\]=0
So, option A is the correct answer for this question
Note: In case on applying the value of the limits directly in the equation , if we don’t get in the form $\dfrac{0}{0}$ or \[\dfrac{\infty }{\infty }\] , then we need not apply the L Hospital’s rule we can substitute the value of the limits directly and solve it
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

