
The value of $\cot {{18}^{\circ }}\left( \cot {{72}^{\circ }}{{\cos }^{2}}{{22}^{\circ }}+\dfrac{1}{\tan {{72}^{\circ }}{{\sec }^{2}}{{68}^{\circ }}} \right)$ ?
Answer
504.9k+ views
Hint: In the given question, we need to find the value of the given trigonometric expression using various trigonometric identities and values of trigonometric functions at various angles and hence conclude some results or expression values as asked in the question.
Complete step by step answer:
According to the given question, we want to evaluate the value of the given expression which is $\cot {{18}^{\circ }}\left( \cot {{72}^{\circ }}{{\cos }^{2}}{{22}^{\circ }}+\dfrac{1}{\tan {{72}^{\circ }}{{\sec }^{2}}{{68}^{\circ }}} \right)$. Now, in order to evaluate it firstly we will sec in terms of cosine function and tangent function in terms of cot function and now the new expression would be $\cot {{18}^{\circ }}\left( \cot {{72}^{\circ }}{{\cos }^{2}}{{22}^{\circ }}+\cot {{72}^{\circ }}{{\cos }^{2}}{{68}^{\circ }} \right)$ .
Now, further we know some transformation identities of various angles by adding or subtracting angles from $\dfrac{\pi }{2}$ .
Now, we know that $\cos \left( \dfrac{\pi }{2}-x \right)=\sin x$ and similarly we know for cot function that $\cot \left( \dfrac{\pi }{2}-x \right)=\tan x$. Now, applying these two identities in the last gained expression we get
$\begin{align}
& \cot {{18}^{\circ }}\cot \left( \dfrac{\pi }{2}-{{18}^{\circ }} \right)\left( {{\cos }^{2}}{{22}^{\circ }}+{{\cos }^{2}}{{\left( \dfrac{\pi }{2}-22 \right)}^{\circ }} \right) \\
& \\
\end{align}$
Now, putting the values as given in the identities before we get,
$\begin{align}
& \cot {{18}^{\circ }}\cot \left( \dfrac{\pi }{2}-{{18}^{\circ }} \right)\left( {{\cos }^{2}}{{22}^{\circ }}+{{\cos }^{2}}{{\left( \dfrac{\pi }{2}-22 \right)}^{\circ }} \right) \\
& \Rightarrow \cot {{18}^{\circ }}\tan {{18}^{\circ }}\left( {{\cos }^{2}}{{22}^{\circ }}+{{\sin }^{2}}{{22}^{\circ }} \right) \\
\end{align}$
Now, we know that ${{\cos }^{2}}x+{{\sin }^{2}}x=1$ , so using these in the above expression we get $1\times 1=1$ .
As we know that the tan and cot functions are reciprocal of each other.
Therefore, the value of the given expression is 1.
Note: The major mistake that we make in these types of expression is we manually start evaluating the value at the given specific angles which consumes our lot of time. Instead, what we need to remember is to apply various trigonometric functions in order to reduce the calculation mistake and calculation time.
Complete step by step answer:
According to the given question, we want to evaluate the value of the given expression which is $\cot {{18}^{\circ }}\left( \cot {{72}^{\circ }}{{\cos }^{2}}{{22}^{\circ }}+\dfrac{1}{\tan {{72}^{\circ }}{{\sec }^{2}}{{68}^{\circ }}} \right)$. Now, in order to evaluate it firstly we will sec in terms of cosine function and tangent function in terms of cot function and now the new expression would be $\cot {{18}^{\circ }}\left( \cot {{72}^{\circ }}{{\cos }^{2}}{{22}^{\circ }}+\cot {{72}^{\circ }}{{\cos }^{2}}{{68}^{\circ }} \right)$ .
Now, further we know some transformation identities of various angles by adding or subtracting angles from $\dfrac{\pi }{2}$ .
Now, we know that $\cos \left( \dfrac{\pi }{2}-x \right)=\sin x$ and similarly we know for cot function that $\cot \left( \dfrac{\pi }{2}-x \right)=\tan x$. Now, applying these two identities in the last gained expression we get
$\begin{align}
& \cot {{18}^{\circ }}\cot \left( \dfrac{\pi }{2}-{{18}^{\circ }} \right)\left( {{\cos }^{2}}{{22}^{\circ }}+{{\cos }^{2}}{{\left( \dfrac{\pi }{2}-22 \right)}^{\circ }} \right) \\
& \\
\end{align}$
Now, putting the values as given in the identities before we get,
$\begin{align}
& \cot {{18}^{\circ }}\cot \left( \dfrac{\pi }{2}-{{18}^{\circ }} \right)\left( {{\cos }^{2}}{{22}^{\circ }}+{{\cos }^{2}}{{\left( \dfrac{\pi }{2}-22 \right)}^{\circ }} \right) \\
& \Rightarrow \cot {{18}^{\circ }}\tan {{18}^{\circ }}\left( {{\cos }^{2}}{{22}^{\circ }}+{{\sin }^{2}}{{22}^{\circ }} \right) \\
\end{align}$
Now, we know that ${{\cos }^{2}}x+{{\sin }^{2}}x=1$ , so using these in the above expression we get $1\times 1=1$ .
As we know that the tan and cot functions are reciprocal of each other.
Therefore, the value of the given expression is 1.
Note: The major mistake that we make in these types of expression is we manually start evaluating the value at the given specific angles which consumes our lot of time. Instead, what we need to remember is to apply various trigonometric functions in order to reduce the calculation mistake and calculation time.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

