Answer
Verified
381.3k+ views
Hint: In the given question, we need to find the value of the given trigonometric expression using various trigonometric identities and values of trigonometric functions at various angles and hence conclude some results or expression values as asked in the question.
Complete step by step answer:
According to the given question, we want to evaluate the value of the given expression which is $\cot {{18}^{\circ }}\left( \cot {{72}^{\circ }}{{\cos }^{2}}{{22}^{\circ }}+\dfrac{1}{\tan {{72}^{\circ }}{{\sec }^{2}}{{68}^{\circ }}} \right)$. Now, in order to evaluate it firstly we will sec in terms of cosine function and tangent function in terms of cot function and now the new expression would be $\cot {{18}^{\circ }}\left( \cot {{72}^{\circ }}{{\cos }^{2}}{{22}^{\circ }}+\cot {{72}^{\circ }}{{\cos }^{2}}{{68}^{\circ }} \right)$ .
Now, further we know some transformation identities of various angles by adding or subtracting angles from $\dfrac{\pi }{2}$ .
Now, we know that $\cos \left( \dfrac{\pi }{2}-x \right)=\sin x$ and similarly we know for cot function that $\cot \left( \dfrac{\pi }{2}-x \right)=\tan x$. Now, applying these two identities in the last gained expression we get
$\begin{align}
& \cot {{18}^{\circ }}\cot \left( \dfrac{\pi }{2}-{{18}^{\circ }} \right)\left( {{\cos }^{2}}{{22}^{\circ }}+{{\cos }^{2}}{{\left( \dfrac{\pi }{2}-22 \right)}^{\circ }} \right) \\
& \\
\end{align}$
Now, putting the values as given in the identities before we get,
$\begin{align}
& \cot {{18}^{\circ }}\cot \left( \dfrac{\pi }{2}-{{18}^{\circ }} \right)\left( {{\cos }^{2}}{{22}^{\circ }}+{{\cos }^{2}}{{\left( \dfrac{\pi }{2}-22 \right)}^{\circ }} \right) \\
& \Rightarrow \cot {{18}^{\circ }}\tan {{18}^{\circ }}\left( {{\cos }^{2}}{{22}^{\circ }}+{{\sin }^{2}}{{22}^{\circ }} \right) \\
\end{align}$
Now, we know that ${{\cos }^{2}}x+{{\sin }^{2}}x=1$ , so using these in the above expression we get $1\times 1=1$ .
As we know that the tan and cot functions are reciprocal of each other.
Therefore, the value of the given expression is 1.
Note: The major mistake that we make in these types of expression is we manually start evaluating the value at the given specific angles which consumes our lot of time. Instead, what we need to remember is to apply various trigonometric functions in order to reduce the calculation mistake and calculation time.
Complete step by step answer:
According to the given question, we want to evaluate the value of the given expression which is $\cot {{18}^{\circ }}\left( \cot {{72}^{\circ }}{{\cos }^{2}}{{22}^{\circ }}+\dfrac{1}{\tan {{72}^{\circ }}{{\sec }^{2}}{{68}^{\circ }}} \right)$. Now, in order to evaluate it firstly we will sec in terms of cosine function and tangent function in terms of cot function and now the new expression would be $\cot {{18}^{\circ }}\left( \cot {{72}^{\circ }}{{\cos }^{2}}{{22}^{\circ }}+\cot {{72}^{\circ }}{{\cos }^{2}}{{68}^{\circ }} \right)$ .
Now, further we know some transformation identities of various angles by adding or subtracting angles from $\dfrac{\pi }{2}$ .
Now, we know that $\cos \left( \dfrac{\pi }{2}-x \right)=\sin x$ and similarly we know for cot function that $\cot \left( \dfrac{\pi }{2}-x \right)=\tan x$. Now, applying these two identities in the last gained expression we get
$\begin{align}
& \cot {{18}^{\circ }}\cot \left( \dfrac{\pi }{2}-{{18}^{\circ }} \right)\left( {{\cos }^{2}}{{22}^{\circ }}+{{\cos }^{2}}{{\left( \dfrac{\pi }{2}-22 \right)}^{\circ }} \right) \\
& \\
\end{align}$
Now, putting the values as given in the identities before we get,
$\begin{align}
& \cot {{18}^{\circ }}\cot \left( \dfrac{\pi }{2}-{{18}^{\circ }} \right)\left( {{\cos }^{2}}{{22}^{\circ }}+{{\cos }^{2}}{{\left( \dfrac{\pi }{2}-22 \right)}^{\circ }} \right) \\
& \Rightarrow \cot {{18}^{\circ }}\tan {{18}^{\circ }}\left( {{\cos }^{2}}{{22}^{\circ }}+{{\sin }^{2}}{{22}^{\circ }} \right) \\
\end{align}$
Now, we know that ${{\cos }^{2}}x+{{\sin }^{2}}x=1$ , so using these in the above expression we get $1\times 1=1$ .
As we know that the tan and cot functions are reciprocal of each other.
Therefore, the value of the given expression is 1.
Note: The major mistake that we make in these types of expression is we manually start evaluating the value at the given specific angles which consumes our lot of time. Instead, what we need to remember is to apply various trigonometric functions in order to reduce the calculation mistake and calculation time.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE