The value of ${{\text{a}}^4} - {{\text{b}}^4}$ is
$
(a){\text{ (}}{{\text{a}}^2}{\text{ - }}{{\text{b}}^2}{\text{)(a + b)(a - b)}} \\
{\text{(b) (}}{{\text{a}}^2}{\text{ - }}{{\text{b}}^2}{\text{)(a - b)(a - b)}} \\
(c){\text{ (}}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{)(a + b)(a - b)}} \\
({\text{d}}){\text{ (}}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{)(a + b}}{{\text{)}}^2} \\
$
Last updated date: 26th Mar 2023
•
Total views: 308.1k
•
Views today: 7.85k
Answer
308.1k+ views
HINT- In order to solve such types of questions we should keep one thing in mind that if both terms are perfect squares then use the difference of square formula.
Complete step-by-step answer:
In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$ --(1)
Since both terms are perfect squares in the given question, factor using the difference of squares formula
In the case of ${{\text{a}}^4} - {{\text{b}}^4}$, you will see that ${{\text{a}}^4}$ is just ${({{\text{a}}^2})^2}$ and ${{\text{b}}^4}$is just ${({{\text{b}}^2})^2}$
${\text{ = }}{{\text{a}}^4} - {{\text{b}}^4} = {({{\text{a}}^2}{\text{)}}^2} - {({{\text{b}}^2}{\text{)}}^2}$ ---- (2)
Here, ${\text{m = }}({{\text{a}}^2}{\text{) and n = }}({{\text{b}}^2}{\text{)}}$
So using expression (1)
$ = {({{\text{a}}^2}{\text{)}}^2} - {({{\text{b}}^2}{\text{)}}^2} = \left( {({{\text{a}}^2}{\text{) + }}({{\text{b}}^2}{\text{)}}} \right)\left( {({{\text{a}}^2}{\text{) - }}({{\text{b}}^2}{\text{)}}} \right)$ --- (3)
But as you can see, we can use the formula (1) again in 2nd term of RHS
where ${\text{m = }}({\text{a) and n = }}({\text{b)}}$
$ = {\text{ }}({{\text{a}}^2}{\text{ - }}{{\text{b}}^2}) = ({\text{a + b}})({\text{a - b}})$--- (4)
On putting value of (4) in expression (3)
$ = {\text{ }}{({{\text{a}}^2}{\text{)}}^2} - {({{\text{b}}^2}{\text{)}}^2} = \left( {({{\text{a}}^2}{\text{) + }}({{\text{b}}^2}{\text{)}}} \right)\left( {({\text{a + b}})({\text{a - b}})} \right)$ ---- (5)
On putting value of (2) in expression (5)
\[ = {\text{ }}({{\text{a}}^4}{\text{)}} - ({{\text{b}}^4}{\text{)}} = \left( {({{\text{a}}^2}{\text{) + }}({{\text{b}}^2}{\text{)}}} \right)\left( {({\text{a + b}})({\text{a - b}})} \right)\]
Which is the required answer.
Hence option c is correct.
Note- Whenever we face such types of problems the key concept we have to remember is that we should always try to factorise those binomial expressions which are having even power using identity which is stated above. Sometimes we have to apply identity more than one, like in the above question, we used the difference of square identity twice.
Complete step-by-step answer:
In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$ --(1)
Since both terms are perfect squares in the given question, factor using the difference of squares formula
In the case of ${{\text{a}}^4} - {{\text{b}}^4}$, you will see that ${{\text{a}}^4}$ is just ${({{\text{a}}^2})^2}$ and ${{\text{b}}^4}$is just ${({{\text{b}}^2})^2}$
${\text{ = }}{{\text{a}}^4} - {{\text{b}}^4} = {({{\text{a}}^2}{\text{)}}^2} - {({{\text{b}}^2}{\text{)}}^2}$ ---- (2)
Here, ${\text{m = }}({{\text{a}}^2}{\text{) and n = }}({{\text{b}}^2}{\text{)}}$
So using expression (1)
$ = {({{\text{a}}^2}{\text{)}}^2} - {({{\text{b}}^2}{\text{)}}^2} = \left( {({{\text{a}}^2}{\text{) + }}({{\text{b}}^2}{\text{)}}} \right)\left( {({{\text{a}}^2}{\text{) - }}({{\text{b}}^2}{\text{)}}} \right)$ --- (3)
But as you can see, we can use the formula (1) again in 2nd term of RHS
where ${\text{m = }}({\text{a) and n = }}({\text{b)}}$
$ = {\text{ }}({{\text{a}}^2}{\text{ - }}{{\text{b}}^2}) = ({\text{a + b}})({\text{a - b}})$--- (4)
On putting value of (4) in expression (3)
$ = {\text{ }}{({{\text{a}}^2}{\text{)}}^2} - {({{\text{b}}^2}{\text{)}}^2} = \left( {({{\text{a}}^2}{\text{) + }}({{\text{b}}^2}{\text{)}}} \right)\left( {({\text{a + b}})({\text{a - b}})} \right)$ ---- (5)
On putting value of (2) in expression (5)
\[ = {\text{ }}({{\text{a}}^4}{\text{)}} - ({{\text{b}}^4}{\text{)}} = \left( {({{\text{a}}^2}{\text{) + }}({{\text{b}}^2}{\text{)}}} \right)\left( {({\text{a + b}})({\text{a - b}})} \right)\]
Which is the required answer.
Hence option c is correct.
Note- Whenever we face such types of problems the key concept we have to remember is that we should always try to factorise those binomial expressions which are having even power using identity which is stated above. Sometimes we have to apply identity more than one, like in the above question, we used the difference of square identity twice.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
