Answer
Verified
492.3k+ views
HINT- In order to solve such types of questions we should keep one thing in mind that if both terms are perfect squares then use the difference of square formula.
Complete step-by-step answer:
In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$ --(1)
Since both terms are perfect squares in the given question, factor using the difference of squares formula
In the case of ${{\text{a}}^4} - {{\text{b}}^4}$, you will see that ${{\text{a}}^4}$ is just ${({{\text{a}}^2})^2}$ and ${{\text{b}}^4}$is just ${({{\text{b}}^2})^2}$
${\text{ = }}{{\text{a}}^4} - {{\text{b}}^4} = {({{\text{a}}^2}{\text{)}}^2} - {({{\text{b}}^2}{\text{)}}^2}$ ---- (2)
Here, ${\text{m = }}({{\text{a}}^2}{\text{) and n = }}({{\text{b}}^2}{\text{)}}$
So using expression (1)
$ = {({{\text{a}}^2}{\text{)}}^2} - {({{\text{b}}^2}{\text{)}}^2} = \left( {({{\text{a}}^2}{\text{) + }}({{\text{b}}^2}{\text{)}}} \right)\left( {({{\text{a}}^2}{\text{) - }}({{\text{b}}^2}{\text{)}}} \right)$ --- (3)
But as you can see, we can use the formula (1) again in 2nd term of RHS
where ${\text{m = }}({\text{a) and n = }}({\text{b)}}$
$ = {\text{ }}({{\text{a}}^2}{\text{ - }}{{\text{b}}^2}) = ({\text{a + b}})({\text{a - b}})$--- (4)
On putting value of (4) in expression (3)
$ = {\text{ }}{({{\text{a}}^2}{\text{)}}^2} - {({{\text{b}}^2}{\text{)}}^2} = \left( {({{\text{a}}^2}{\text{) + }}({{\text{b}}^2}{\text{)}}} \right)\left( {({\text{a + b}})({\text{a - b}})} \right)$ ---- (5)
On putting value of (2) in expression (5)
\[ = {\text{ }}({{\text{a}}^4}{\text{)}} - ({{\text{b}}^4}{\text{)}} = \left( {({{\text{a}}^2}{\text{) + }}({{\text{b}}^2}{\text{)}}} \right)\left( {({\text{a + b}})({\text{a - b}})} \right)\]
Which is the required answer.
Hence option c is correct.
Note- Whenever we face such types of problems the key concept we have to remember is that we should always try to factorise those binomial expressions which are having even power using identity which is stated above. Sometimes we have to apply identity more than one, like in the above question, we used the difference of square identity twice.
Complete step-by-step answer:
In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$ --(1)
Since both terms are perfect squares in the given question, factor using the difference of squares formula
In the case of ${{\text{a}}^4} - {{\text{b}}^4}$, you will see that ${{\text{a}}^4}$ is just ${({{\text{a}}^2})^2}$ and ${{\text{b}}^4}$is just ${({{\text{b}}^2})^2}$
${\text{ = }}{{\text{a}}^4} - {{\text{b}}^4} = {({{\text{a}}^2}{\text{)}}^2} - {({{\text{b}}^2}{\text{)}}^2}$ ---- (2)
Here, ${\text{m = }}({{\text{a}}^2}{\text{) and n = }}({{\text{b}}^2}{\text{)}}$
So using expression (1)
$ = {({{\text{a}}^2}{\text{)}}^2} - {({{\text{b}}^2}{\text{)}}^2} = \left( {({{\text{a}}^2}{\text{) + }}({{\text{b}}^2}{\text{)}}} \right)\left( {({{\text{a}}^2}{\text{) - }}({{\text{b}}^2}{\text{)}}} \right)$ --- (3)
But as you can see, we can use the formula (1) again in 2nd term of RHS
where ${\text{m = }}({\text{a) and n = }}({\text{b)}}$
$ = {\text{ }}({{\text{a}}^2}{\text{ - }}{{\text{b}}^2}) = ({\text{a + b}})({\text{a - b}})$--- (4)
On putting value of (4) in expression (3)
$ = {\text{ }}{({{\text{a}}^2}{\text{)}}^2} - {({{\text{b}}^2}{\text{)}}^2} = \left( {({{\text{a}}^2}{\text{) + }}({{\text{b}}^2}{\text{)}}} \right)\left( {({\text{a + b}})({\text{a - b}})} \right)$ ---- (5)
On putting value of (2) in expression (5)
\[ = {\text{ }}({{\text{a}}^4}{\text{)}} - ({{\text{b}}^4}{\text{)}} = \left( {({{\text{a}}^2}{\text{) + }}({{\text{b}}^2}{\text{)}}} \right)\left( {({\text{a + b}})({\text{a - b}})} \right)\]
Which is the required answer.
Hence option c is correct.
Note- Whenever we face such types of problems the key concept we have to remember is that we should always try to factorise those binomial expressions which are having even power using identity which is stated above. Sometimes we have to apply identity more than one, like in the above question, we used the difference of square identity twice.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE