Answer
Verified
491.7k+ views
Hint: Use the formula for the total surface area of a solid hemisphere, that is $3\pi {{r}^{2}}$. Equate this with the given total surface area and solve the equation to find the radius.
Complete step-by-step answer:
A solid sphere has two surfaces, a curved surface and a flat surface. The total surface area of the hemisphere is the sum of the surface areas of both these surfaces. The curved surface area is given as $2{{\pi }^{2}}$ and the surface area of the flat surface at the bottom is given by the same formula as the area of a circle as it is circular in shape; that is, $\pi {{r}^{2}}$.
Thus, the total surface area of the solid hemisphere will be $2\pi {{r}^{2}}+\pi {{r}^{2}}=3\pi {{r}^{2}}$.
Equating this surface area with the total surface area given in the question, we get
$\begin{align}
& 3\pi {{r}^{2}}=462c{{m}^{2}} \\
& \Rightarrow \pi {{r}^{2}}=\dfrac{462}{3}c{{m}^{2}} \\
& \Rightarrow \pi {{r}^{2}}=154c{{m}^{2}} \\
\end{align}$
Using the value of $\pi =\dfrac{22}{7}$ in this equation we get
$\begin{align}
& \dfrac{22}{7}{{r}^{2}}=154c{{m}^{2}} \\
& \Rightarrow {{r}^{2}}=154c{{m}^{2}}\times \dfrac{7}{22} \\
& \Rightarrow {{r}^{2}}=49c{{m}^{2}} \\
\end{align}$
Solving the equation by taking the positive square root on both sides, we get $r=7cm$. Thus the radius of the given solid hemisphere is 7 cm.
Note: Since the hemisphere is solid, therefore the base area also needs to be considered and not only the curved surface. It is common to make this mistake of considering only the curved surface in calculation of the total surface area, and should be kept in mind while solving such questions.
Complete step-by-step answer:
A solid sphere has two surfaces, a curved surface and a flat surface. The total surface area of the hemisphere is the sum of the surface areas of both these surfaces. The curved surface area is given as $2{{\pi }^{2}}$ and the surface area of the flat surface at the bottom is given by the same formula as the area of a circle as it is circular in shape; that is, $\pi {{r}^{2}}$.
Thus, the total surface area of the solid hemisphere will be $2\pi {{r}^{2}}+\pi {{r}^{2}}=3\pi {{r}^{2}}$.
Equating this surface area with the total surface area given in the question, we get
$\begin{align}
& 3\pi {{r}^{2}}=462c{{m}^{2}} \\
& \Rightarrow \pi {{r}^{2}}=\dfrac{462}{3}c{{m}^{2}} \\
& \Rightarrow \pi {{r}^{2}}=154c{{m}^{2}} \\
\end{align}$
Using the value of $\pi =\dfrac{22}{7}$ in this equation we get
$\begin{align}
& \dfrac{22}{7}{{r}^{2}}=154c{{m}^{2}} \\
& \Rightarrow {{r}^{2}}=154c{{m}^{2}}\times \dfrac{7}{22} \\
& \Rightarrow {{r}^{2}}=49c{{m}^{2}} \\
\end{align}$
Solving the equation by taking the positive square root on both sides, we get $r=7cm$. Thus the radius of the given solid hemisphere is 7 cm.
Note: Since the hemisphere is solid, therefore the base area also needs to be considered and not only the curved surface. It is common to make this mistake of considering only the curved surface in calculation of the total surface area, and should be kept in mind while solving such questions.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Why is monsoon considered a unifying bond class 10 social science CBSE
Explain Anti-Poverty measures taken by the Government of India