
The total surface area of a solid hemisphere is $462c{{m}^{2}}$. Find its radius.
Answer
605.7k+ views
Hint: Use the formula for the total surface area of a solid hemisphere, that is $3\pi {{r}^{2}}$. Equate this with the given total surface area and solve the equation to find the radius.
Complete step-by-step answer:
A solid sphere has two surfaces, a curved surface and a flat surface. The total surface area of the hemisphere is the sum of the surface areas of both these surfaces. The curved surface area is given as $2{{\pi }^{2}}$ and the surface area of the flat surface at the bottom is given by the same formula as the area of a circle as it is circular in shape; that is, $\pi {{r}^{2}}$.
Thus, the total surface area of the solid hemisphere will be $2\pi {{r}^{2}}+\pi {{r}^{2}}=3\pi {{r}^{2}}$.
Equating this surface area with the total surface area given in the question, we get
$\begin{align}
& 3\pi {{r}^{2}}=462c{{m}^{2}} \\
& \Rightarrow \pi {{r}^{2}}=\dfrac{462}{3}c{{m}^{2}} \\
& \Rightarrow \pi {{r}^{2}}=154c{{m}^{2}} \\
\end{align}$
Using the value of $\pi =\dfrac{22}{7}$ in this equation we get
$\begin{align}
& \dfrac{22}{7}{{r}^{2}}=154c{{m}^{2}} \\
& \Rightarrow {{r}^{2}}=154c{{m}^{2}}\times \dfrac{7}{22} \\
& \Rightarrow {{r}^{2}}=49c{{m}^{2}} \\
\end{align}$
Solving the equation by taking the positive square root on both sides, we get $r=7cm$. Thus the radius of the given solid hemisphere is 7 cm.
Note: Since the hemisphere is solid, therefore the base area also needs to be considered and not only the curved surface. It is common to make this mistake of considering only the curved surface in calculation of the total surface area, and should be kept in mind while solving such questions.
Complete step-by-step answer:
A solid sphere has two surfaces, a curved surface and a flat surface. The total surface area of the hemisphere is the sum of the surface areas of both these surfaces. The curved surface area is given as $2{{\pi }^{2}}$ and the surface area of the flat surface at the bottom is given by the same formula as the area of a circle as it is circular in shape; that is, $\pi {{r}^{2}}$.
Thus, the total surface area of the solid hemisphere will be $2\pi {{r}^{2}}+\pi {{r}^{2}}=3\pi {{r}^{2}}$.
Equating this surface area with the total surface area given in the question, we get
$\begin{align}
& 3\pi {{r}^{2}}=462c{{m}^{2}} \\
& \Rightarrow \pi {{r}^{2}}=\dfrac{462}{3}c{{m}^{2}} \\
& \Rightarrow \pi {{r}^{2}}=154c{{m}^{2}} \\
\end{align}$
Using the value of $\pi =\dfrac{22}{7}$ in this equation we get
$\begin{align}
& \dfrac{22}{7}{{r}^{2}}=154c{{m}^{2}} \\
& \Rightarrow {{r}^{2}}=154c{{m}^{2}}\times \dfrac{7}{22} \\
& \Rightarrow {{r}^{2}}=49c{{m}^{2}} \\
\end{align}$
Solving the equation by taking the positive square root on both sides, we get $r=7cm$. Thus the radius of the given solid hemisphere is 7 cm.
Note: Since the hemisphere is solid, therefore the base area also needs to be considered and not only the curved surface. It is common to make this mistake of considering only the curved surface in calculation of the total surface area, and should be kept in mind while solving such questions.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

