
The third term of G.P. is 4. Find the product of its five terms.
Answer
524.1k+ views
Hint: Equate the third term of G.P. with 4. And convert the product of the first five terms in the form of the third term.
Complete step-by-step answer:
According to the question, the third term of the G.P. is 4. Let $a$ and $r$ be the first term and common ratio of the G.P. Then the G.P. is:
$ \Rightarrow a,ar,a{r^2},a{r^3},....$
We know that the general term of G.P. is:
${T_r} = a{r^{n - 1}}$
Third term is given as 4. So we have:
$
\Rightarrow {T_3} = 4, \\
\Rightarrow a{r^{3 - 1}} = 4, \\
\Rightarrow a{r^2} = 4 .....(i) \\
$
The product of first five terms is:
$ \Rightarrow $ Product $ = a \times ar \times a{r^2} \times a{r^3} \times a{r^4} = {a^5}{r^{10}} = {\left( {a{r^2}} \right)^5}$
Putting the value of $a{r^2}$ from equation $(i)$, we’ll get:
$ \Rightarrow $ Product $ = {\left( 4 \right)^5} = 1024$
Thus, the product of first terms of G.P. is 1024.
Note: This can be solved by another method as:
If five numbers are in G.P. then the middle number (i.e. third number) is their geometric mean.
Third term is given as 4. So, 4 is the geometric mean of the first five terms of G.P.
And if the geometric mean of five numbers is 4, then their product is ${4^5}$.
Complete step-by-step answer:
According to the question, the third term of the G.P. is 4. Let $a$ and $r$ be the first term and common ratio of the G.P. Then the G.P. is:
$ \Rightarrow a,ar,a{r^2},a{r^3},....$
We know that the general term of G.P. is:
${T_r} = a{r^{n - 1}}$
Third term is given as 4. So we have:
$
\Rightarrow {T_3} = 4, \\
\Rightarrow a{r^{3 - 1}} = 4, \\
\Rightarrow a{r^2} = 4 .....(i) \\
$
The product of first five terms is:
$ \Rightarrow $ Product $ = a \times ar \times a{r^2} \times a{r^3} \times a{r^4} = {a^5}{r^{10}} = {\left( {a{r^2}} \right)^5}$
Putting the value of $a{r^2}$ from equation $(i)$, we’ll get:
$ \Rightarrow $ Product $ = {\left( 4 \right)^5} = 1024$
Thus, the product of first terms of G.P. is 1024.
Note: This can be solved by another method as:
If five numbers are in G.P. then the middle number (i.e. third number) is their geometric mean.
Third term is given as 4. So, 4 is the geometric mean of the first five terms of G.P.
And if the geometric mean of five numbers is 4, then their product is ${4^5}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

