
The sum to 50 terms of the series 1+$2\left( {\dfrac{{11}}{{50}}} \right) + 3{\left( {\dfrac{{11}}{{50}}} \right)^2} + .......$ is given by
A. 2500
B. 2550
C. 2450
D. none of these
Answer
513k+ views
Hint-From the initial few terms given , first try to find out what would be the 50th term in the sequence and then find the sum to the 50 terms accordingly.
The given sequence is 1+ $2\left( {\dfrac{{11}}{{50}}} \right) + 3{\left( {\dfrac{{11}}{{50}}} \right)^2} + .......$
So, the sum to 50 terms of the series can be written as
${S_{50}} = 1 + 2\left( {\dfrac{{11}}{{50}}} \right) + 3{\left( {\dfrac{{11}}{{50}}} \right)^2} + .......50{\left( {\dfrac{{11}}{{50}}} \right)^{49}}$ ---------(i)
So, now as we see in the equation we have ${\left( {\dfrac{{11}}{{50}}} \right)^{n - 1}}$
Since , it is missing in the first term, we will multiply both the LHS and RHS by $\dfrac{{11}}{{50}}$
So, we get the equation as $\dfrac{{11}}{{10}}{S_{50}} = \dfrac{{11}}{{50}} + 2{\left( {\dfrac{{11}}{{50}}} \right)^2} + 3{\left( {\dfrac{{11}}{{50}}} \right)^3} + .......50{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$-----(ii)
Now, let us subtract eq(i)-eq(ii)
So, we get ${S_{50}} - \dfrac{{11}}{{50}}{S_{50}} = 1 + \dfrac{{11}}{{50}} + {\left( {\dfrac{{11}}{{50}}} \right)^2} + {\left( {\dfrac{{11}}{{50}}} \right)^3} + .........{\left( {\dfrac{{11}}{{50}}} \right)^{49}} - 50{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$
Now, as we can see the RHS is in geometric progression,
Because $\dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{{T_3}}}{{{T_2}}} = \dfrac{{11}}{{50}}$
We know the sum of n terms of a geometric progression(G.P) is given by
${S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}};$ if r<0
So, from this we get the equation as
$\dfrac{{39}}{{50}}{S_{50}}$ =$\dfrac{{1 - {{\left( {\dfrac{{11}}{{50}}} \right)}^{50}}}}{{1 - \left( {\dfrac{{11}}{{50}}} \right)}} - 50{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$
Now, on taking LCM and shifting $\dfrac{{39}}{{50}}$ to the RHS and solving this further we can write this to be equal to
${S_{50}} = {\left( {\dfrac{{50}}{{39}}} \right)^2}\left[ {1 - {{\left( {\dfrac{{11}}{{50}}} \right)}^{50}}} \right] - \dfrac{{{{50}^2}}}{{39}}{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$
Now on taking $\dfrac{{{{50}^2}}}{{39}}$ common from both the terms , we get the equation to be equal to
$\dfrac{{50}}{{39}}\left[ {\dfrac{{50}}{{39}} \times \dfrac{{39}}{{50}} \times {{\left( {\dfrac{{11}}{{50}}} \right)}^{49}} \times 11} \right] - 50 \times \dfrac{{11}}{{50}} \times {\left( {\dfrac{{11}}{{50}}} \right)^{49}}$
So, on solving this, we get
$50 \times 50 = 2500$
So, option A is the correct answer to this question
Note: In these types of questions, first try to bring the given series into a standard progression that is into AP, GP or HP and then solve. In this case, we have got a geometric progression, solve it in accordance to the data given
The given sequence is 1+ $2\left( {\dfrac{{11}}{{50}}} \right) + 3{\left( {\dfrac{{11}}{{50}}} \right)^2} + .......$
So, the sum to 50 terms of the series can be written as
${S_{50}} = 1 + 2\left( {\dfrac{{11}}{{50}}} \right) + 3{\left( {\dfrac{{11}}{{50}}} \right)^2} + .......50{\left( {\dfrac{{11}}{{50}}} \right)^{49}}$ ---------(i)
So, now as we see in the equation we have ${\left( {\dfrac{{11}}{{50}}} \right)^{n - 1}}$
Since , it is missing in the first term, we will multiply both the LHS and RHS by $\dfrac{{11}}{{50}}$
So, we get the equation as $\dfrac{{11}}{{10}}{S_{50}} = \dfrac{{11}}{{50}} + 2{\left( {\dfrac{{11}}{{50}}} \right)^2} + 3{\left( {\dfrac{{11}}{{50}}} \right)^3} + .......50{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$-----(ii)
Now, let us subtract eq(i)-eq(ii)
So, we get ${S_{50}} - \dfrac{{11}}{{50}}{S_{50}} = 1 + \dfrac{{11}}{{50}} + {\left( {\dfrac{{11}}{{50}}} \right)^2} + {\left( {\dfrac{{11}}{{50}}} \right)^3} + .........{\left( {\dfrac{{11}}{{50}}} \right)^{49}} - 50{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$
Now, as we can see the RHS is in geometric progression,
Because $\dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{{T_3}}}{{{T_2}}} = \dfrac{{11}}{{50}}$
We know the sum of n terms of a geometric progression(G.P) is given by
${S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}};$ if r<0
So, from this we get the equation as
$\dfrac{{39}}{{50}}{S_{50}}$ =$\dfrac{{1 - {{\left( {\dfrac{{11}}{{50}}} \right)}^{50}}}}{{1 - \left( {\dfrac{{11}}{{50}}} \right)}} - 50{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$
Now, on taking LCM and shifting $\dfrac{{39}}{{50}}$ to the RHS and solving this further we can write this to be equal to
${S_{50}} = {\left( {\dfrac{{50}}{{39}}} \right)^2}\left[ {1 - {{\left( {\dfrac{{11}}{{50}}} \right)}^{50}}} \right] - \dfrac{{{{50}^2}}}{{39}}{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$
Now on taking $\dfrac{{{{50}^2}}}{{39}}$ common from both the terms , we get the equation to be equal to
$\dfrac{{50}}{{39}}\left[ {\dfrac{{50}}{{39}} \times \dfrac{{39}}{{50}} \times {{\left( {\dfrac{{11}}{{50}}} \right)}^{49}} \times 11} \right] - 50 \times \dfrac{{11}}{{50}} \times {\left( {\dfrac{{11}}{{50}}} \right)^{49}}$
So, on solving this, we get
$50 \times 50 = 2500$
So, option A is the correct answer to this question
Note: In these types of questions, first try to bring the given series into a standard progression that is into AP, GP or HP and then solve. In this case, we have got a geometric progression, solve it in accordance to the data given
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What constitutes the central nervous system How are class 10 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Explain the Treaty of Vienna of 1815 class 10 social science CBSE
