The sum to 50 terms of the series 1+$2\left( {\dfrac{{11}}{{50}}} \right) + 3{\left( {\dfrac{{11}}{{50}}} \right)^2} + .......$ is given by
A. 2500
B. 2550
C. 2450
D. none of these
Last updated date: 24th Mar 2023
•
Total views: 305.7k
•
Views today: 7.84k
Answer
305.7k+ views
Hint-From the initial few terms given , first try to find out what would be the 50th term in the sequence and then find the sum to the 50 terms accordingly.
The given sequence is 1+ $2\left( {\dfrac{{11}}{{50}}} \right) + 3{\left( {\dfrac{{11}}{{50}}} \right)^2} + .......$
So, the sum to 50 terms of the series can be written as
${S_{50}} = 1 + 2\left( {\dfrac{{11}}{{50}}} \right) + 3{\left( {\dfrac{{11}}{{50}}} \right)^2} + .......50{\left( {\dfrac{{11}}{{50}}} \right)^{49}}$ ---------(i)
So, now as we see in the equation we have ${\left( {\dfrac{{11}}{{50}}} \right)^{n - 1}}$
Since , it is missing in the first term, we will multiply both the LHS and RHS by $\dfrac{{11}}{{50}}$
So, we get the equation as $\dfrac{{11}}{{10}}{S_{50}} = \dfrac{{11}}{{50}} + 2{\left( {\dfrac{{11}}{{50}}} \right)^2} + 3{\left( {\dfrac{{11}}{{50}}} \right)^3} + .......50{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$-----(ii)
Now, let us subtract eq(i)-eq(ii)
So, we get ${S_{50}} - \dfrac{{11}}{{50}}{S_{50}} = 1 + \dfrac{{11}}{{50}} + {\left( {\dfrac{{11}}{{50}}} \right)^2} + {\left( {\dfrac{{11}}{{50}}} \right)^3} + .........{\left( {\dfrac{{11}}{{50}}} \right)^{49}} - 50{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$
Now, as we can see the RHS is in geometric progression,
Because $\dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{{T_3}}}{{{T_2}}} = \dfrac{{11}}{{50}}$
We know the sum of n terms of a geometric progression(G.P) is given by
${S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}};$ if r<0
So, from this we get the equation as
$\dfrac{{39}}{{50}}{S_{50}}$ =$\dfrac{{1 - {{\left( {\dfrac{{11}}{{50}}} \right)}^{50}}}}{{1 - \left( {\dfrac{{11}}{{50}}} \right)}} - 50{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$
Now, on taking LCM and shifting $\dfrac{{39}}{{50}}$ to the RHS and solving this further we can write this to be equal to
${S_{50}} = {\left( {\dfrac{{50}}{{39}}} \right)^2}\left[ {1 - {{\left( {\dfrac{{11}}{{50}}} \right)}^{50}}} \right] - \dfrac{{{{50}^2}}}{{39}}{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$
Now on taking $\dfrac{{{{50}^2}}}{{39}}$ common from both the terms , we get the equation to be equal to
$\dfrac{{50}}{{39}}\left[ {\dfrac{{50}}{{39}} \times \dfrac{{39}}{{50}} \times {{\left( {\dfrac{{11}}{{50}}} \right)}^{49}} \times 11} \right] - 50 \times \dfrac{{11}}{{50}} \times {\left( {\dfrac{{11}}{{50}}} \right)^{49}}$
So, on solving this, we get
$50 \times 50 = 2500$
So, option A is the correct answer to this question
Note: In these types of questions, first try to bring the given series into a standard progression that is into AP, GP or HP and then solve. In this case, we have got a geometric progression, solve it in accordance to the data given
The given sequence is 1+ $2\left( {\dfrac{{11}}{{50}}} \right) + 3{\left( {\dfrac{{11}}{{50}}} \right)^2} + .......$
So, the sum to 50 terms of the series can be written as
${S_{50}} = 1 + 2\left( {\dfrac{{11}}{{50}}} \right) + 3{\left( {\dfrac{{11}}{{50}}} \right)^2} + .......50{\left( {\dfrac{{11}}{{50}}} \right)^{49}}$ ---------(i)
So, now as we see in the equation we have ${\left( {\dfrac{{11}}{{50}}} \right)^{n - 1}}$
Since , it is missing in the first term, we will multiply both the LHS and RHS by $\dfrac{{11}}{{50}}$
So, we get the equation as $\dfrac{{11}}{{10}}{S_{50}} = \dfrac{{11}}{{50}} + 2{\left( {\dfrac{{11}}{{50}}} \right)^2} + 3{\left( {\dfrac{{11}}{{50}}} \right)^3} + .......50{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$-----(ii)
Now, let us subtract eq(i)-eq(ii)
So, we get ${S_{50}} - \dfrac{{11}}{{50}}{S_{50}} = 1 + \dfrac{{11}}{{50}} + {\left( {\dfrac{{11}}{{50}}} \right)^2} + {\left( {\dfrac{{11}}{{50}}} \right)^3} + .........{\left( {\dfrac{{11}}{{50}}} \right)^{49}} - 50{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$
Now, as we can see the RHS is in geometric progression,
Because $\dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{{T_3}}}{{{T_2}}} = \dfrac{{11}}{{50}}$
We know the sum of n terms of a geometric progression(G.P) is given by
${S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}};$ if r<0
So, from this we get the equation as
$\dfrac{{39}}{{50}}{S_{50}}$ =$\dfrac{{1 - {{\left( {\dfrac{{11}}{{50}}} \right)}^{50}}}}{{1 - \left( {\dfrac{{11}}{{50}}} \right)}} - 50{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$
Now, on taking LCM and shifting $\dfrac{{39}}{{50}}$ to the RHS and solving this further we can write this to be equal to
${S_{50}} = {\left( {\dfrac{{50}}{{39}}} \right)^2}\left[ {1 - {{\left( {\dfrac{{11}}{{50}}} \right)}^{50}}} \right] - \dfrac{{{{50}^2}}}{{39}}{\left( {\dfrac{{11}}{{50}}} \right)^{50}}$
Now on taking $\dfrac{{{{50}^2}}}{{39}}$ common from both the terms , we get the equation to be equal to
$\dfrac{{50}}{{39}}\left[ {\dfrac{{50}}{{39}} \times \dfrac{{39}}{{50}} \times {{\left( {\dfrac{{11}}{{50}}} \right)}^{49}} \times 11} \right] - 50 \times \dfrac{{11}}{{50}} \times {\left( {\dfrac{{11}}{{50}}} \right)^{49}}$
So, on solving this, we get
$50 \times 50 = 2500$
So, option A is the correct answer to this question
Note: In these types of questions, first try to bring the given series into a standard progression that is into AP, GP or HP and then solve. In this case, we have got a geometric progression, solve it in accordance to the data given
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
