The sum $ {S_n} $ of the terms of an arithmetic progression is defined by the formula $ {S_n} = 4{n^2} - 3n $ for any n. Write the first three terms of the progression.
Last updated date: 24th Mar 2023
•
Total views: 206.1k
•
Views today: 2.84k
Answer
206.1k+ views
Hint: In the given problem, we are given the expression for the sum of n terms of an arithmetic progression. We are required to find the first three terms of the progression on the basis of already available information. For finding out the sum of an arithmetic progression, we need to know the first term, the common difference and the number of terms in the arithmetic progression. We can find out the common difference of an arithmetic progression by knowing the difference of any two consecutive terms of the series.
Complete step-by-step answer:
So, we have the sum of an arithmetic progression as $ {S_n} = 4{n^2} - 3n $
Now, we know that we can find the sum of the given arithmetic progression using the formula $ S = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] $ , where n is the number of terms in the AP, d is the common difference between any two consecutive terms of arithmetic progression and a is the first term of the series.
So, we can equate the formula of sum of n terms with the expression provided to us in the problem. So, we get, $ S = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] = 4{n^2} - 3n $
Now, we can take n common from the bracket. So, we get,
$ \Rightarrow \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] = n\left( {4n - 3} \right) $
Now, taking $ \left( {\dfrac{1}{2}} \right) $ common from the bracket in the right side of the equation in order to resemble the left side of the equation, we get,
$ \Rightarrow \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] = \dfrac{n}{2}\left( {8n - 6} \right) $
Now, comparing both the sides of the equation, we get,
$ \Rightarrow 2a + \left( {n - 1} \right)d = 8n - 6 $
Simplify the equation, we get,
$ \Rightarrow 2a + \left( {n - 1} \right)d = 8\left( {n - 1} \right) + 8 - 6 $
$ \Rightarrow 2a + \left( {n - 1} \right)d = 8\left( {n - 1} \right) + 2 $
So, comparing both the sides of the equation, we get,
$ 2a = 2 $ and $ d = 8 $
$ \Rightarrow a = 1 $ and $ d = 8 $
So, we get the first term of the arithmetic progression as $ 1 $ and the common difference of AP as $ 8 $ .
Now, we can find the first three terms of the progression using the general term for nth term of an AP.
So, we have, $ {a_n} = a + \left( {n - 1} \right)d $
So, the first term of the progression is $ {a_1} = a + \left( {1 - 1} \right)d = a = 1 $ .
Second term of the progression is $ {a_2} = a + \left( {2 - 1} \right)d = a + d = 1 + 8 = 9 $
Third term of the progression is $ {a_3} = a + \left( {3 - 1} \right)d = a + 2d = 1 + 2\left( 8 \right) = 17 $
So, the first three terms of the arithmetic progression are: $ 1 $ , $ 9 $ and $ 17 $ .
So, the correct answer is “ $ 1 $ , $ 9 $ and $ 17 $ ”.
Note: Arithmetic progression is a series where any two consecutive terms have the same difference between them. The common difference of an arithmetic series can be calculated by subtraction of any two consecutive terms of the series. The sum of n terms of an arithmetic progression can be calculated if we know the first term, the number of terms and difference of the arithmetic series as: $ S = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] $ .
Complete step-by-step answer:
So, we have the sum of an arithmetic progression as $ {S_n} = 4{n^2} - 3n $
Now, we know that we can find the sum of the given arithmetic progression using the formula $ S = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] $ , where n is the number of terms in the AP, d is the common difference between any two consecutive terms of arithmetic progression and a is the first term of the series.
So, we can equate the formula of sum of n terms with the expression provided to us in the problem. So, we get, $ S = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] = 4{n^2} - 3n $
Now, we can take n common from the bracket. So, we get,
$ \Rightarrow \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] = n\left( {4n - 3} \right) $
Now, taking $ \left( {\dfrac{1}{2}} \right) $ common from the bracket in the right side of the equation in order to resemble the left side of the equation, we get,
$ \Rightarrow \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] = \dfrac{n}{2}\left( {8n - 6} \right) $
Now, comparing both the sides of the equation, we get,
$ \Rightarrow 2a + \left( {n - 1} \right)d = 8n - 6 $
Simplify the equation, we get,
$ \Rightarrow 2a + \left( {n - 1} \right)d = 8\left( {n - 1} \right) + 8 - 6 $
$ \Rightarrow 2a + \left( {n - 1} \right)d = 8\left( {n - 1} \right) + 2 $
So, comparing both the sides of the equation, we get,
$ 2a = 2 $ and $ d = 8 $
$ \Rightarrow a = 1 $ and $ d = 8 $
So, we get the first term of the arithmetic progression as $ 1 $ and the common difference of AP as $ 8 $ .
Now, we can find the first three terms of the progression using the general term for nth term of an AP.
So, we have, $ {a_n} = a + \left( {n - 1} \right)d $
So, the first term of the progression is $ {a_1} = a + \left( {1 - 1} \right)d = a = 1 $ .
Second term of the progression is $ {a_2} = a + \left( {2 - 1} \right)d = a + d = 1 + 8 = 9 $
Third term of the progression is $ {a_3} = a + \left( {3 - 1} \right)d = a + 2d = 1 + 2\left( 8 \right) = 17 $
So, the first three terms of the arithmetic progression are: $ 1 $ , $ 9 $ and $ 17 $ .
So, the correct answer is “ $ 1 $ , $ 9 $ and $ 17 $ ”.
Note: Arithmetic progression is a series where any two consecutive terms have the same difference between them. The common difference of an arithmetic series can be calculated by subtraction of any two consecutive terms of the series. The sum of n terms of an arithmetic progression can be calculated if we know the first term, the number of terms and difference of the arithmetic series as: $ S = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] $ .
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
