
The sum of the squares of 2 consecutive odd numbers is 394. Find the numbers.
Answer
592.5k+ views
Hint: Consider the 2 consecutive odd numbers as x and x+2. Find the sum of squares of these numbers.Find the value of x and you will get the two consecutive odd numbers.
“Complete step-by-step answer:”
The sum of the squares of 2 consecutive odd numbers is 394. Let us consider one odd number as x and the other consecutive odd number as (x + 2).
We know the odd numbers 1, 3, 5, 7……
So if one number is ‘x’ then the other consecutive odd number can be found by adding 2 to the \[{{1}^{st}}\]number.
So let us take 2 consecutive odd numbers as x and x + 2.
Now it is given that the sum of squares of these consecutive numbers x and (x + 2) is 394.
\[\therefore {{\left( x \right)}^{2}}+{{\left( x+2 \right)}^{2}}=394\]
We know, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Now open the brackets and simplify them,
\[\begin{align}
& {{x}^{2}}+{{x}^{2}}+2\times 2x+{{2}^{2}}=394 \\
& \Rightarrow 2{{x}^{2}}+4x+4=394 \\
\end{align}\]
Divide the entire equation by 2.
\[\begin{align}
& {{x}^{2}}+2x+2=197 \\
& {{x}^{2}}+2x=197-2 \\
& {{x}^{2}}+2x=195 \\
& {{x}^{2}}+2x-195=0-(1) \\
\end{align}\]
We got a quadratic equation which is similar to the general quadratic equation, \[a{{x}^{2}}+bx+c=0\].
By comparing equation (1) and the general equation, we get
a = 1, b = 2, c = -195.
Apply these values in the quadratic formula \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] and find the value of x.
\[\begin{align}
& \dfrac{-2\pm \sqrt{{{\left( 2 \right)}^{2}}-4\times 1\times \left( -195 \right)}}{2\times 1}=\dfrac{-2\pm \sqrt{4+780}}{2} \\
& =\dfrac{-2\pm \sqrt{784}}{2}=\dfrac{-2\pm \sqrt{28\times 28}}{2}=\dfrac{-2\pm 28}{2} \\
\end{align}\]
Hence the roots are \[\left( \dfrac{-2+28}{2} \right)\]and \[\left( \dfrac{-2-28}{2} \right)\]= 13 and -15.
\[\therefore \]Value of x = 13, which is an odd number.
Thus we got the \[{{1}^{st}}\]consecutive number as x =13.
Hence, \[{{2}^{nd}}\]consecutive number as x + 2 = 13 + 2 = 15
Thus the 2 consecutive odd numbers are 13 and 15.
Note: You should consider 2 consecutive terms as x and (x + 2), which is the key to solve this question. We know an odd number, for example 3 is an odd number. (3 + 2) gives 5, which is the odd number near to 3. Thus, 3 and 5 are consecutive terms.
“Complete step-by-step answer:”
The sum of the squares of 2 consecutive odd numbers is 394. Let us consider one odd number as x and the other consecutive odd number as (x + 2).
We know the odd numbers 1, 3, 5, 7……
So if one number is ‘x’ then the other consecutive odd number can be found by adding 2 to the \[{{1}^{st}}\]number.
So let us take 2 consecutive odd numbers as x and x + 2.
Now it is given that the sum of squares of these consecutive numbers x and (x + 2) is 394.
\[\therefore {{\left( x \right)}^{2}}+{{\left( x+2 \right)}^{2}}=394\]
We know, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Now open the brackets and simplify them,
\[\begin{align}
& {{x}^{2}}+{{x}^{2}}+2\times 2x+{{2}^{2}}=394 \\
& \Rightarrow 2{{x}^{2}}+4x+4=394 \\
\end{align}\]
Divide the entire equation by 2.
\[\begin{align}
& {{x}^{2}}+2x+2=197 \\
& {{x}^{2}}+2x=197-2 \\
& {{x}^{2}}+2x=195 \\
& {{x}^{2}}+2x-195=0-(1) \\
\end{align}\]
We got a quadratic equation which is similar to the general quadratic equation, \[a{{x}^{2}}+bx+c=0\].
By comparing equation (1) and the general equation, we get
a = 1, b = 2, c = -195.
Apply these values in the quadratic formula \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] and find the value of x.
\[\begin{align}
& \dfrac{-2\pm \sqrt{{{\left( 2 \right)}^{2}}-4\times 1\times \left( -195 \right)}}{2\times 1}=\dfrac{-2\pm \sqrt{4+780}}{2} \\
& =\dfrac{-2\pm \sqrt{784}}{2}=\dfrac{-2\pm \sqrt{28\times 28}}{2}=\dfrac{-2\pm 28}{2} \\
\end{align}\]
Hence the roots are \[\left( \dfrac{-2+28}{2} \right)\]and \[\left( \dfrac{-2-28}{2} \right)\]= 13 and -15.
\[\therefore \]Value of x = 13, which is an odd number.
Thus we got the \[{{1}^{st}}\]consecutive number as x =13.
Hence, \[{{2}^{nd}}\]consecutive number as x + 2 = 13 + 2 = 15
Thus the 2 consecutive odd numbers are 13 and 15.
Note: You should consider 2 consecutive terms as x and (x + 2), which is the key to solve this question. We know an odd number, for example 3 is an odd number. (3 + 2) gives 5, which is the odd number near to 3. Thus, 3 and 5 are consecutive terms.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

