
The sum of the series $ 2\left( {{1.7}^{-1}}+{{3}^{-1}}{{.7}^{-3}}+{{5}^{-1}}{{.7}^{-5}}+....... \right) $ .
Answer
459k+ views
Hint: For this kind of problem, we need to simplify the given series into the know formulas. For this, we need to observe the terms in the given series and use suitable formulas for simplification. Here we will use the formula $ {{a}^{-n}}=\dfrac{1}{{{a}^{n}}} $ and modify all the series by using this formula. We have the formulas $ \log \left( 1+x \right) $ and $ \log \left( 1-x \right) $ to compare the obtained series and find the required result.
Complete step by step answer:
Given that,
$ 2\left( {{1.7}^{-1}}+{{3}^{-1}}{{.7}^{-3}}+{{5}^{-1}}{{.7}^{-5}}+....... \right) $
Let $ S=2\left( {{1.7}^{-1}}+{{3}^{-1}}{{.7}^{-3}}+{{5}^{-1}}{{.7}^{-5}}+....... \right) $ .
Using the formula $ {{a}^{-n}}=\dfrac{1}{{{a}^{n}}} $ in the above equation, then we will get
$ S=2\left( 1.\dfrac{1}{7}+\dfrac{1}{3}.\dfrac{1}{{{7}^{3}}}+\dfrac{1}{5}.\dfrac{1}{{{7}^{5}}}+....... \right) $
We know that $ {{1}^{n}}=1 $ , then we will get
$ S=2\left( \dfrac{1}{7}+\dfrac{1}{3}.\dfrac{{{1}^{3}}}{{{7}^{3}}}+\dfrac{1}{5}.\dfrac{{{1}^{5}}}{{{7}^{5}}}+...... \right) $
We know that $ \dfrac{{{a}^{m}}}{{{b}^{m}}}={{\left( \dfrac{a}{b} \right)}^{m}} $ , then we will have
$ S=2\left( \dfrac{1}{7}+\dfrac{1}{3}.{{\left( \dfrac{1}{7} \right)}^{3}}+\dfrac{1}{5}.{{\left( \dfrac{1}{7} \right)}^{5}}+...... \right) $
Considering $ \dfrac{1}{7} $ as whole term in the above equation, then we will get
$ S=2\left( \dfrac{{{\left( \dfrac{1}{7} \right)}^{1}}}{1}+\dfrac{{{\left( \dfrac{1}{7} \right)}^{3}}}{3}+\dfrac{{{\left( \dfrac{1}{7} \right)}^{5}}}{5}+...... \right)......\left( \text{i} \right) $
We have the formulas $ \log \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...... $ and $ \log \left( 1-x \right)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-....... $
Now the value of \[\log \left( 1+x \right)-\log \left( 1-x \right)\] can be calculated as
\[\begin{align}
& \log \left( 1+x \right)-\log \left( 1-x \right)=\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+.... \right]-\left[ -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-.... \right] \\
& \Rightarrow \log \left( 1+x \right)-\log \left( 1-x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+..... \\
& \Rightarrow \log \left( 1+x \right)-\log \left( 1-x \right)=2x+2.\dfrac{{{x}^{3}}}{3}+2.\dfrac{{{x}^{5}}}{5}+..... \\
\end{align}\]
Taking $ 2 $ as common from the above equation, then we will get
$ \Rightarrow \log \left( 1+x \right)-\log \left( 1-x \right)=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+..... \right) $
Let us substituting the value $ x=\dfrac{1}{7} $ in the above equation, then we will get
$ \log \left( 1+\dfrac{1}{7} \right)-\log \left( 1-\dfrac{1}{7} \right)=2\left( \dfrac{1}{7}+\dfrac{{{\left( \dfrac{1}{7} \right)}^{3}}}{3}+\dfrac{{{\left( \dfrac{1}{7} \right)}^{5}}}{5}+.... \right) $
From equation $ \left( \text{i} \right) $ , we have the value of $ 2\left( \dfrac{1}{7}+\dfrac{{{\left( \dfrac{1}{7} \right)}^{3}}}{3}+\dfrac{{{\left( \dfrac{1}{7} \right)}^{5}}}{5}+.... \right)=S $ , then we will get
$ S=\log \left( 1+\dfrac{1}{7} \right)-\log \left( 1-\dfrac{1}{7} \right) $
Simplifying the above equation by taking the LCM of $ 1+\dfrac{1}{7} $ , $ 1-\dfrac{1}{7} $ in the above equation, then we will get
$ \begin{align}
& \Rightarrow S=\log \left( \dfrac{1\times 7+1}{7} \right)-\log \left( \dfrac{1\times 7-1}{7} \right) \\
& \Rightarrow S=\log \left( \dfrac{8}{7} \right)-\log \left( \dfrac{6}{7} \right) \\
\end{align} $
We have the logarithmic formula $ \log a-\log b=\log \left( \dfrac{a}{b} \right) $ , then we will get
$ \begin{align}
& S=\log \left( \dfrac{\dfrac{8}{7}}{\dfrac{6}{7}} \right) \\
& \Rightarrow S=\log \left( \dfrac{8}{7}\times \dfrac{7}{6} \right) \\
\end{align} $
Cancelling the possible terms in the above equation, then we will get
$ S=\log \left( \dfrac{4}{3} \right) $
Hence the value of the series $ 2\left( {{1.7}^{-1}}+{{3}^{-1}}{{.7}^{-3}}+{{5}^{-1}}{{.7}^{-5}}+....... \right) $ is $ \log \left( \dfrac{4}{3} \right) $ .
Note:
The problems related to the series are very complicated i.e., we will get different answers for a small changes in the question. Here we have the series like $ 2\left( {{1.7}^{-1}}+{{3}^{-1}}{{.7}^{-3}}+{{5}^{-1}}{{.7}^{-5}}+....... \right) $ , if it is like $ 2\left( {{1.7}^{-1}}+{{3.7}^{-3}}+{{5.7}^{-5}}+....... \right) $ , then we need to use different formulas and different method and also, we will get different answer for this case.
Complete step by step answer:
Given that,
$ 2\left( {{1.7}^{-1}}+{{3}^{-1}}{{.7}^{-3}}+{{5}^{-1}}{{.7}^{-5}}+....... \right) $
Let $ S=2\left( {{1.7}^{-1}}+{{3}^{-1}}{{.7}^{-3}}+{{5}^{-1}}{{.7}^{-5}}+....... \right) $ .
Using the formula $ {{a}^{-n}}=\dfrac{1}{{{a}^{n}}} $ in the above equation, then we will get
$ S=2\left( 1.\dfrac{1}{7}+\dfrac{1}{3}.\dfrac{1}{{{7}^{3}}}+\dfrac{1}{5}.\dfrac{1}{{{7}^{5}}}+....... \right) $
We know that $ {{1}^{n}}=1 $ , then we will get
$ S=2\left( \dfrac{1}{7}+\dfrac{1}{3}.\dfrac{{{1}^{3}}}{{{7}^{3}}}+\dfrac{1}{5}.\dfrac{{{1}^{5}}}{{{7}^{5}}}+...... \right) $
We know that $ \dfrac{{{a}^{m}}}{{{b}^{m}}}={{\left( \dfrac{a}{b} \right)}^{m}} $ , then we will have
$ S=2\left( \dfrac{1}{7}+\dfrac{1}{3}.{{\left( \dfrac{1}{7} \right)}^{3}}+\dfrac{1}{5}.{{\left( \dfrac{1}{7} \right)}^{5}}+...... \right) $
Considering $ \dfrac{1}{7} $ as whole term in the above equation, then we will get
$ S=2\left( \dfrac{{{\left( \dfrac{1}{7} \right)}^{1}}}{1}+\dfrac{{{\left( \dfrac{1}{7} \right)}^{3}}}{3}+\dfrac{{{\left( \dfrac{1}{7} \right)}^{5}}}{5}+...... \right)......\left( \text{i} \right) $
We have the formulas $ \log \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...... $ and $ \log \left( 1-x \right)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-....... $
Now the value of \[\log \left( 1+x \right)-\log \left( 1-x \right)\] can be calculated as
\[\begin{align}
& \log \left( 1+x \right)-\log \left( 1-x \right)=\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+.... \right]-\left[ -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-.... \right] \\
& \Rightarrow \log \left( 1+x \right)-\log \left( 1-x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+..... \\
& \Rightarrow \log \left( 1+x \right)-\log \left( 1-x \right)=2x+2.\dfrac{{{x}^{3}}}{3}+2.\dfrac{{{x}^{5}}}{5}+..... \\
\end{align}\]
Taking $ 2 $ as common from the above equation, then we will get
$ \Rightarrow \log \left( 1+x \right)-\log \left( 1-x \right)=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+..... \right) $
Let us substituting the value $ x=\dfrac{1}{7} $ in the above equation, then we will get
$ \log \left( 1+\dfrac{1}{7} \right)-\log \left( 1-\dfrac{1}{7} \right)=2\left( \dfrac{1}{7}+\dfrac{{{\left( \dfrac{1}{7} \right)}^{3}}}{3}+\dfrac{{{\left( \dfrac{1}{7} \right)}^{5}}}{5}+.... \right) $
From equation $ \left( \text{i} \right) $ , we have the value of $ 2\left( \dfrac{1}{7}+\dfrac{{{\left( \dfrac{1}{7} \right)}^{3}}}{3}+\dfrac{{{\left( \dfrac{1}{7} \right)}^{5}}}{5}+.... \right)=S $ , then we will get
$ S=\log \left( 1+\dfrac{1}{7} \right)-\log \left( 1-\dfrac{1}{7} \right) $
Simplifying the above equation by taking the LCM of $ 1+\dfrac{1}{7} $ , $ 1-\dfrac{1}{7} $ in the above equation, then we will get
$ \begin{align}
& \Rightarrow S=\log \left( \dfrac{1\times 7+1}{7} \right)-\log \left( \dfrac{1\times 7-1}{7} \right) \\
& \Rightarrow S=\log \left( \dfrac{8}{7} \right)-\log \left( \dfrac{6}{7} \right) \\
\end{align} $
We have the logarithmic formula $ \log a-\log b=\log \left( \dfrac{a}{b} \right) $ , then we will get
$ \begin{align}
& S=\log \left( \dfrac{\dfrac{8}{7}}{\dfrac{6}{7}} \right) \\
& \Rightarrow S=\log \left( \dfrac{8}{7}\times \dfrac{7}{6} \right) \\
\end{align} $
Cancelling the possible terms in the above equation, then we will get
$ S=\log \left( \dfrac{4}{3} \right) $
Hence the value of the series $ 2\left( {{1.7}^{-1}}+{{3}^{-1}}{{.7}^{-3}}+{{5}^{-1}}{{.7}^{-5}}+....... \right) $ is $ \log \left( \dfrac{4}{3} \right) $ .
Note:
The problems related to the series are very complicated i.e., we will get different answers for a small changes in the question. Here we have the series like $ 2\left( {{1.7}^{-1}}+{{3}^{-1}}{{.7}^{-3}}+{{5}^{-1}}{{.7}^{-5}}+....... \right) $ , if it is like $ 2\left( {{1.7}^{-1}}+{{3.7}^{-3}}+{{5.7}^{-5}}+....... \right) $ , then we need to use different formulas and different method and also, we will get different answer for this case.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What constitutes the central nervous system How are class 10 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Explain the Treaty of Vienna of 1815 class 10 social science CBSE
